Replicating Human Social Perception in Generative AI: Evaluating the Valence-Dominance Model
- URL: http://arxiv.org/abs/2503.04842v1
- Date: Wed, 05 Mar 2025 17:35:18 GMT
- Title: Replicating Human Social Perception in Generative AI: Evaluating the Valence-Dominance Model
- Authors: Necdet Gurkan, Kimathi Njoki, Jordan W. Suchow,
- Abstract summary: We show that multimodal generative AI systems can replicate key aspects of human social perception.<n>Findings raise important questions about their implications for AI-driven decision-making and human-AI interactions.
- Score: 0.13654846342364302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence (AI) continues to advance--particularly in generative models--an open question is whether these systems can replicate foundational models of human social perception. A well-established framework in social cognition suggests that social judgments are organized along two primary dimensions: valence (e.g., trustworthiness, warmth) and dominance (e.g., power, assertiveness). This study examines whether multimodal generative AI systems can reproduce this valence-dominance structure when evaluating facial images and how their representations align with those observed across world regions. Through principal component analysis (PCA), we found that the extracted dimensions closely mirrored the theoretical structure of valence and dominance, with trait loadings aligning with established definitions. However, many world regions and generative AI models also exhibited a third component, the nature and significance of which warrant further investigation. These findings demonstrate that multimodal generative AI systems can replicate key aspects of human social perception, raising important questions about their implications for AI-driven decision-making and human-AI interactions.
Related papers
- A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
Human-Centered AI (HCAI) emphasizes alignment with human values, while Explainable AI (XAI) enhances transparency by making AI decisions more understandable.
This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm.
Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
arXiv Detail & Related papers (2025-04-14T01:29:30Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
Current AI systems face challenges including hallucination, unpredictability, and misalignment with human decision-making.
This study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems.
arXiv Detail & Related papers (2025-04-12T18:15:49Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
The OpenAI-o1 model is a transformer-based AI trained with reinforcement learning from human feedback.
We investigate how RLHF influences the model's internal reasoning processes, potentially giving rise to consciousness-like experiences.
Our findings suggest that the OpenAI-o1 model shows aspects of consciousness, while acknowledging the ongoing debates surrounding AI sentience.
arXiv Detail & Related papers (2024-09-18T06:06:13Z) - AI and Social Theory [0.0]
We sketch a programme for AI driven social theory, starting by defining what we mean by artificial intelligence (AI)
We then lay out our model for how AI based models can draw on the growing availability of digital data to help test the validity of different social theories based on their predictive power.
arXiv Detail & Related papers (2024-07-07T12:26:16Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - AI-enhanced Collective Intelligence [2.5063318977668465]
Humans and AI possess complementary capabilities that can surpass the collective intelligence of either humans or AI in isolation.
This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence.
We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence.
arXiv Detail & Related papers (2024-03-15T16:11:15Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Modelling Human Values for AI Reasoning [2.320648715016106]
We detail a formal model of human values for their explicit computational representation.
We show how this model can provide the foundational apparatus for AI-based reasoning over values.
We propose a roadmap for future integrated, and interdisciplinary, research into human values in AI.
arXiv Detail & Related papers (2024-02-09T12:08:49Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.