論文の概要: A Chaos Driven Metric for Backdoor Attack Detection
- arxiv url: http://arxiv.org/abs/2505.03208v1
- Date: Tue, 06 May 2025 05:51:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.230031
- Title: A Chaos Driven Metric for Backdoor Attack Detection
- Title(参考訳): バックドア検出のためのカオス駆動型メトリクス
- Authors: Hema Karnam Surendrababu, Nithin Nagaraj,
- Abstract要約: この研究は、AIモデルの最も重要な攻撃ベクトルの1つであるトレーニングデータセットのデータ中毒によるバックドア攻撃に対する、新たな防御メカニズムを提案する。
本手法では,カオス理論と多様体学習を組み合わせた統合的手法を提案する。
ニューロカオス特徴の条件分散に基づく新しい尺度-精度行列依存スコア(PDS)を定式化する。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement and adoption of Artificial Intelligence (AI) models across diverse domains have transformed the way we interact with technology. However, it is essential to recognize that while AI models have introduced remarkable advancements, they also present inherent challenges such as their vulnerability to adversarial attacks. The current work proposes a novel defense mechanism against one of the most significant attack vectors of AI models - the backdoor attack via data poisoning of training datasets. In this defense technique, an integrated approach that combines chaos theory with manifold learning is proposed. A novel metric - Precision Matrix Dependency Score (PDS) that is based on the conditional variance of Neurochaos features is formulated. The PDS metric has been successfully evaluated to distinguish poisoned samples from non-poisoned samples across diverse datasets.
- Abstract(参考訳): さまざまな領域にわたる人工知能(AI)モデルの進歩と採用は、テクノロジとのインタラクションの方法を変えました。
しかし、AIモデルが顕著な進歩をもたらした一方で、敵の攻撃に対する脆弱性のような固有の課題も提示していることを認識することが不可欠である。
現在の研究では、トレーニングデータセットのデータ中毒によるバックドア攻撃という、AIモデルの最も重要な攻撃ベクトルの1つに対する、新たな防御メカニズムが提案されている。
本手法では,カオス理論と多様体学習を組み合わせた統合的手法を提案する。
ニューロカオス特徴の条件分散に基づく新しい尺度-精度行列依存スコア(PDS)を定式化する。
PDS測定は、様々なデータセットで無毒のサンプルと無毒のサンプルを区別することに成功した。
関連論文リスト
- Intrusion Detection System with Machine Learning and Multiple Datasets [0.0]
本稿では,機械学習(ML)を利用した拡張侵入検知システム(IDS)について検討する。
最終的に、この改良されたシステムは、非倫理的なハッカーによる攻撃に対抗するために使用できる。
論文 参考訳(メタデータ) (2023-12-04T14:58:19Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
敵の訓練と敵の浄化は最も広く認知されている防衛戦略の一つである。
そこで本稿では,新たな原則であるALU(Adversarial Logit Update)を提案する。
本手法は,幅広い敵攻撃に対する最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-29T07:13:31Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - Adversarial Poisoning Attacks and Defense for General Multi-Class Models
Based On Synthetic Reduced Nearest Neighbors [14.968442560499753]
最先端の機械学習モデルは、データ中毒攻撃に弱い。
本論文では,データのマルチモダリティに基づく新しいモデルフリーラベルフリップ攻撃を提案する。
第二に、SRNN(Synthetic reduced Nearest Neighbor)モデルに基づく新しい防御技術を提案する。
論文 参考訳(メタデータ) (2021-02-11T06:55:40Z) - Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack [35.0689225703137]
機械学習に基づくセキュリティ検出モデルは、敵の回避攻撃の影響を受けやすい。
我々はオムニ(Omni)と呼ばれる手法を提案し、「予期せぬモデル」のアンサンブルを作成する方法を探る。
5種類の敵対的回避攻撃による研究において,オムニは防衛戦略として有望なアプローチであることを示す。
論文 参考訳(メタデータ) (2020-11-23T20:02:40Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。