論文の概要: Survey of Abstract Meaning Representation: Then, Now, Future
- arxiv url: http://arxiv.org/abs/2505.03229v1
- Date: Tue, 06 May 2025 06:45:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.238353
- Title: Survey of Abstract Meaning Representation: Then, Now, Future
- Title(参考訳): 抽象的意味表現に関する調査:その時, 今, 未来
- Authors: Behrooz Mansouri,
- Abstract要約: AMRは文を、ノードが概念に対応し、エッジが関係を表す、ルート付き、有向非巡回グラフとして表現する。
本調査では,AMR機能を中心に,AMRとその拡張について検討する。
- 参考スコア(独自算出の注目度): 4.450931715128549
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper presents a survey of Abstract Meaning Representation (AMR), a semantic representation framework that captures the meaning of sentences through a graph-based structure. AMR represents sentences as rooted, directed acyclic graphs, where nodes correspond to concepts and edges denote relationships, effectively encoding the meaning of complex sentences. This survey investigates AMR and its extensions, focusing on AMR capabilities. It then explores the parsing (text-to-AMR) and generation (AMR-to-text) tasks by showing traditional, current, and possible futures approaches. It also reviews various applications of AMR including text generation, text classification, and information extraction and information seeking. By analyzing recent developments and challenges in the field, this survey provides insights into future directions for research and the potential impact of AMR on enhancing machine understanding of human language.
- Abstract(参考訳): 本稿では,グラフ構造を用いて文の意味を抽出する意味表現フレームワークである抽象的意味表現(AMR)について調査する。
AMRは、ノードが概念に対応し、エッジは関係を表し、複雑な文の意味を効果的にエンコードする。
本調査では,AMR機能を中心に,AMRとその拡張について検討する。
次に、従来の、現在の、可能な未来のアプローチを示すことによって、構文解析(text-to-AMR)と生成(AMR-to-text)タスクを探索する。
また、テキスト生成、テキスト分類、情報抽出、情報検索など、AMRの様々な応用についても検討した。
この分野における最近の発展と課題を分析することで,研究の今後の方向性や,AMRが人間の言語に対する機械的理解の強化に与える影響について考察する。
関連論文リスト
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Plot Retrieval as an Assessment of Abstract Semantic Association [131.58819293115124]
Plot Retrievalのテキストペアは単語の重複を少なくし、より抽象的なセマンティックアソシエーションを持つ。
Plot Retrievalは、IRモデルのセマンティックアソシエーションモデリング能力に関するさらなる研究のベンチマークとなる。
論文 参考訳(メタデータ) (2023-11-03T02:02:43Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers [76.51245425667845]
関係抽出(RE)は、基礎となるコンテンツからエンティティ間の関係を識別する。
ディープニューラルネットワークはREの分野を支配しており、顕著な進歩を遂げている。
この調査は、現実世界のREシステムの課題に対処するための研究者の協力的な取り組みを促進することが期待されている。
論文 参考訳(メタデータ) (2023-06-03T08:39:25Z) - An AMR-based Link Prediction Approach for Document-level Event Argument
Extraction [51.77733454436013]
文書レベルのイベント調停抽出(文書レベルEAE)のための抽象的意味表現(AMR)を導入した最近の研究動向
本研究では,AEをAMRグラフ上のリンク予測問題として再検討する。
本稿では,より少ない情報量のサブグラフやエッジタイプを圧縮し,スパン情報を統合し,同じ文書内の事象をハイライトする新たなグラフ構造であるTalored AMR Graph(TAG)を提案する。
論文 参考訳(メタデータ) (2023-05-30T16:07:48Z) - Visual Semantic Parsing: From Images to Abstract Meaning Representation [20.60579156219413]
自然言語処理の分野で広く使われている意味表現である抽象的意味表現(AMR)を活用することを提案する。
我々の視覚的AMRグラフは、視覚入力から外挿された高レベルな意味概念に焦点をあてて、言語的により理解されている。
本研究は,シーン理解の改善に向けた今後の重要な研究方向を示唆するものである。
論文 参考訳(メタデータ) (2022-10-26T17:06:42Z) - A Survey : Neural Networks for AMR-to-Text [2.3924114046608627]
AMR-to-Textは、抽象的意味表現(AMR)グラフから文を生成することを目的とした、NLPコミュニティの重要なテクニックの1つである。
2013年にAMRが提案されて以来、AMR-to-Textの研究は、構造化データのテキストへの必須の分岐として、ますます広まりつつある。
論文 参考訳(メタデータ) (2022-06-15T07:20:28Z) - Towards a Decomposable Metric for Explainable Evaluation of Text
Generation from AMR [22.8438857884398]
AMRシステムは典型的には、生成されたテキストと入力の意味表現が構築された参照テキストを比較するメトリクスを用いて評価される。
このような指標が苦しむ既知の問題に加えて,これらの指標をAMR-to-text評価に適用する場合に新たな問題が発生することを示す。
両原則の履行がAMR-to-text評価に有効であることを示す。
論文 参考訳(メタデータ) (2020-08-20T11:25:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。