Synthline: A Product Line Approach for Synthetic Requirements Engineering Data Generation using Large Language Models
- URL: http://arxiv.org/abs/2505.03265v1
- Date: Tue, 06 May 2025 07:57:16 GMT
- Title: Synthline: A Product Line Approach for Synthetic Requirements Engineering Data Generation using Large Language Models
- Authors: Abdelkarim El-Hajjami, Camille Salinesi,
- Abstract summary: This paper introduces Synthline, a Product Line (PL) approach that leverages Large Language Models to generate synthetic Requirements Engineering (RE) data.<n>Our analysis reveals that while synthetic datasets exhibit less diversity than real data, they are good enough to serve as viable training resources.<n>Our evaluation shows that combining synthetic and real data leads to substantial performance improvements.
- Score: 0.5156484100374059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While modern Requirements Engineering (RE) heavily relies on natural language processing and Machine Learning (ML) techniques, their effectiveness is limited by the scarcity of high-quality datasets. This paper introduces Synthline, a Product Line (PL) approach that leverages Large Language Models to systematically generate synthetic RE data for classification-based use cases. Through an empirical evaluation conducted in the context of using ML for the identification of requirements specification defects, we investigated both the diversity of the generated data and its utility for training downstream models. Our analysis reveals that while synthetic datasets exhibit less diversity than real data, they are good enough to serve as viable training resources. Moreover, our evaluation shows that combining synthetic and real data leads to substantial performance improvements. Specifically, hybrid approaches achieve up to 85% improvement in precision and a 2x increase in recall compared to models trained exclusively on real data. These findings demonstrate the potential of PL-based synthetic data generation to address data scarcity in RE. We make both our implementation and generated datasets publicly available to support reproducibility and advancement in the field.
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.<n>Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification [7.357494019212501]
We propose efficient weighted-loss approaches to align synthetic data with real-world distribution.<n>We empirically assessed the effectiveness of our method on multiple text classification tasks.
arXiv Detail & Related papers (2024-10-28T20:53:49Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.<n>We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthetic Data Generation with Large Language Models for Text
Classification: Potential and Limitations [21.583825474908334]
We study how the performance of models trained on synthetic data may vary with the subjectivity of classification.
Our results indicate that subjectivity, at both the task level and instance level, is negatively associated with the performance of the model trained on synthetic data.
arXiv Detail & Related papers (2023-10-11T19:51:13Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.