Artificial Behavior Intelligence: Technology, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2505.03315v1
- Date: Tue, 06 May 2025 08:45:44 GMT
- Title: Artificial Behavior Intelligence: Technology, Challenges, and Future Directions
- Authors: Kanghyun Jo, Jehwan Choi, Kwanho Kim, Seongmin Kim, Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, Tien-Dat Tran,
- Abstract summary: This paper defines the technical framework of Artificial Behavior Intelligence (ABI)<n>ABI comprehensively analyzes and interprets human posture, facial expressions, emotions, behavioral sequences, and contextual cues.<n>It details the essential components of ABI, including pose estimation, face and emotion recognition, sequential behavior analysis, and context-aware modeling.
- Score: 1.5237607855633524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting human behavior has emerged as a core capability in various AI application domains such as autonomous driving, smart healthcare, surveillance systems, and social robotics. This paper defines the technical framework of Artificial Behavior Intelligence (ABI), which comprehensively analyzes and interprets human posture, facial expressions, emotions, behavioral sequences, and contextual cues. It details the essential components of ABI, including pose estimation, face and emotion recognition, sequential behavior analysis, and context-aware modeling. Furthermore, we highlight the transformative potential of recent advances in large-scale pretrained models, such as large language models (LLMs), vision foundation models, and multimodal integration models, in significantly improving the accuracy and interpretability of behavior recognition. Our research team has a strong interest in the ABI domain and is actively conducting research, particularly focusing on the development of intelligent lightweight models capable of efficiently inferring complex human behaviors. This paper identifies several technical challenges that must be addressed to deploy ABI in real-world applications including learning behavioral intelligence from limited data, quantifying uncertainty in complex behavior prediction, and optimizing model structures for low-power, real-time inference. To tackle these challenges, our team is exploring various optimization strategies including lightweight transformers, graph-based recognition architectures, energy-aware loss functions, and multimodal knowledge distillation, while validating their applicability in real-time environments.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - AI Agent Behavioral Science [29.262537008412412]
AI Agent Behavioral Science focuses on the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time.<n>We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties.
arXiv Detail & Related papers (2025-06-04T08:12:32Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Body Discovery of Embodied AI [14.90599757805173]
"Body Discovery of Embodied AI" focuses on tasks of recognizing embodiments and summarizing neural signal functionality.<n>The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments.<n>We develop a simulator tailored for testing algorithms with virtual environments.
arXiv Detail & Related papers (2025-03-25T09:21:10Z) - Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models [16.16798813072285]
The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices.<n>This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models.
arXiv Detail & Related papers (2025-03-08T02:59:51Z) - Visual Error Patterns in Multi-Modal AI: A Statistical Approach [0.0]
Multi-modal large language models (MLLMs) excel at integrating text and visual data but face systematic challenges when interpreting ambiguous or incomplete visual stimuli.<n>This study leverages statistical modeling to analyze the factors driving these errors, using a dataset of geometric stimuli characterized by features like 3D, rotation, and missing face/side.
arXiv Detail & Related papers (2024-11-27T01:20:08Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Integration of cognitive tasks into artificial general intelligence test
for large models [54.72053150920186]
We advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests.
The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence.
arXiv Detail & Related papers (2024-02-04T15:50:42Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks.
This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control.
arXiv Detail & Related papers (2024-02-04T07:55:01Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.