AI Agent Behavioral Science
- URL: http://arxiv.org/abs/2506.06366v3
- Date: Thu, 12 Jun 2025 10:22:01 GMT
- Title: AI Agent Behavioral Science
- Authors: Lin Chen, Yunke Zhang, Jie Feng, Haoye Chai, Honglin Zhang, Bingbing Fan, Yibo Ma, Shiyuan Zhang, Nian Li, Tianhui Liu, Nicholas Sukiennik, Keyu Zhao, Yu Li, Ziyi Liu, Fengli Xu, Yong Li,
- Abstract summary: AI Agent Behavioral Science focuses on the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time.<n>We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties.
- Score: 29.262537008412412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have enabled the development of AI agents that exhibit increasingly human-like behaviors, including planning, adaptation, and social dynamics across diverse, interactive, and open-ended scenarios. These behaviors are not solely the product of the internal architectures of the underlying models, but emerge from their integration into agentic systems operating within specific contexts, where environmental factors, social cues, and interaction feedbacks shape behavior over time. This evolution necessitates a new scientific perspective: AI Agent Behavioral Science. Rather than focusing only on internal mechanisms, this perspective emphasizes the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time. We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and further demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties. By unifying recent findings and laying out future directions, we position AI Agent Behavioral Science as a necessary complement to traditional model-centric approaches, providing essential tools for understanding, evaluating, and governing the real-world behavior of increasingly autonomous AI systems.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems [0.0]
This paper presents a systems-level framework to characterize agentic vehicles (AgVs)<n>AgVs integrate agentic AI to reason, adapt, and interact within complex environments.<n>The paper concludes by identifying key challenges in the development and governance of AgVs.
arXiv Detail & Related papers (2025-07-07T13:34:49Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis.<n>Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements.<n>Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy.
arXiv Detail & Related papers (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Multi-agent Embodied AI: Advances and Future Directions [47.25234488714998]
Embodied artificial intelligence (Embodied AI) plays a pivotal role in the application of advanced technologies in the intelligent era.<n>This paper reviews the current state of research, analyzes key contributions, and identifies challenges and future directions.
arXiv Detail & Related papers (2025-05-08T10:13:53Z) - Artificial Behavior Intelligence: Technology, Challenges, and Future Directions [1.5237607855633524]
This paper defines the technical framework of Artificial Behavior Intelligence (ABI)<n>ABI comprehensively analyzes and interprets human posture, facial expressions, emotions, behavioral sequences, and contextual cues.<n>It details the essential components of ABI, including pose estimation, face and emotion recognition, sequential behavior analysis, and context-aware modeling.
arXiv Detail & Related papers (2025-05-06T08:45:44Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Towards interactive evaluations for interaction harms in human-AI systems [8.989911701384788]
We argue for a paradigm shift toward evaluation centered on.<n>textitinteractional ethics.<n>We propose principles for evaluating generative models through interaction scenarios and human impact metrics.
arXiv Detail & Related papers (2024-05-17T08:49:34Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Understanding Emergent Behaviours in Multi-Agent Systems with
Evolutionary Game Theory [1.0279748604797907]
This paper summarises some main research directions and challenges tackled in our group, using methods from EGT and ABM.
This brief aims to sensitize the reader to EGT based issues, results and prospects, which are accruing in importance for the modeling of minds with machines.
In all cases, important open problems in MAS research as viewed or prioritised by the group are described.
arXiv Detail & Related papers (2022-05-15T20:01:48Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.