論文の概要: Attention-aggregated Attack for Boosting the Transferability of Facial Adversarial Examples
- arxiv url: http://arxiv.org/abs/2505.03383v1
- Date: Tue, 06 May 2025 10:02:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.322477
- Title: Attention-aggregated Attack for Boosting the Transferability of Facial Adversarial Examples
- Title(参考訳): 顔の対向性向上のための注意凝集攻撃
- Authors: Jian-Wei Li, Wen-Ze Shao,
- Abstract要約: 敵対的な例では、ディープラーニングモデルの脆弱性を明らかにし、情報セキュリティに関する深刻な懸念を提起している。
本稿では, FR に対する敵例の転送性を高めるために, 注意凝集攻撃 (AAA) という新たな攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 9.599642761725447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples have revealed the vulnerability of deep learning models and raised serious concerns about information security. The transfer-based attack is a hot topic in black-box attacks that are practical to real-world scenarios where the training datasets, parameters, and structure of the target model are unknown to the attacker. However, few methods consider the particularity of class-specific deep models for fine-grained vision tasks, such as face recognition (FR), giving rise to unsatisfactory attacking performance. In this work, we first investigate what in a face exactly contributes to the embedding learning of FR models and find that both decisive and auxiliary facial features are specific to each FR model, which is quite different from the biological mechanism of human visual system. Accordingly we then propose a novel attack method named Attention-aggregated Attack (AAA) to enhance the transferability of adversarial examples against FR, which is inspired by the attention divergence and aims to destroy the facial features that are critical for the decision-making of other FR models by imitating their attentions on the clean face images. Extensive experiments conducted on various FR models validate the superiority and robust effectiveness of the proposed method over existing methods.
- Abstract(参考訳): 敵対的な例では、ディープラーニングモデルの脆弱性を明らかにし、情報セキュリティに関する深刻な懸念を提起している。
トランスファーベースアタックは、ターゲットモデルのトレーニングデータセット、パラメータ、構造がアタッカーに未知である実世界のシナリオに対して現実的なブラックボックスアタックのホットトピックである。
しかし、顔認識(FR)のような細粒度視覚タスクのためのクラス固有のディープモデルの特異性を考える手法はほとんどなく、不満足な攻撃性能をもたらす。
本研究では、まず、顔がFRモデルの埋め込み学習にどう寄与するかを調査し、決定的および補助的な顔の特徴がそれぞれのFRモデルに固有のものであることを見出した。
そこで本研究では,他のFRモデルの意思決定に欠かせない特徴を,クリーンな顔画像への注意を模倣して破壊することを目的とした,FRに対する敵例の伝達性を高めるために,Attention-aggregated Attack (AAA) という新たな攻撃手法を提案する。
各種FRモデルを用いた大規模実験により,提案手法の既存手法に対する優位性とロバスト性について検証した。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Adversarial Attacks on Both Face Recognition and Face Anti-spoofing Models [47.72177312801278]
顔認識(FR)システムに対するアドリアック攻撃は、純粋なFRモデルの妥協に非常に効果的であることが証明されている。
本稿では, FR モデルと Face Anti-Spoofing (FAS) モデルの両方を同時に攻撃する新しい設定を提案する。
我々は、FRモデルとFASモデルの両方に対するブラックボックス攻撃のキャパシティを改善するために、スタイル整列分散バイアス(SDB)と呼ばれる新しいアタック手法を導入する。
論文 参考訳(メタデータ) (2024-05-27T08:30:29Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - NeRFTAP: Enhancing Transferability of Adversarial Patches on Face
Recognition using Neural Radiance Fields [15.823538329365348]
本稿では、FRモデルへの転送可能性と被害者の顔画像の両方を考慮し、新たな敵攻撃法を提案する。
我々は,敵パッチの転送可能性を高めるために,ソースと対象対象のための新しいビューフェイス画像を生成する。
本研究は, FRシステムの強靭性向上に有用な知見を提供する。
論文 参考訳(メタデータ) (2023-11-29T03:17:14Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Recent improvements of ASR models in the face of adversarial attacks [28.934863462633636]
音声認識モデルは敵攻撃に対して脆弱である。
異なる攻撃アルゴリズムの相対的強度は、モデルアーキテクチャを変更する際に大きく異なることを示す。
ソースコードをパッケージとしてリリースし、将来の攻撃と防御の評価に役立ちます。
論文 参考訳(メタデータ) (2022-03-29T22:40:37Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。