Concept Factorization via Self-Representation and Adaptive Graph Structure Learning
- URL: http://arxiv.org/abs/2505.03390v1
- Date: Tue, 06 May 2025 10:12:59 GMT
- Title: Concept Factorization via Self-Representation and Adaptive Graph Structure Learning
- Authors: Zhengqin Yang, Di Wu, Jia Chen, Xin Luo,
- Abstract summary: We propose a Concept Factorization Based on Self-Representation and Adaptive Graph Structure Learning (CFSRAG) Model.<n>CFSRAG learns the affinity relationship between data through a self-representation method, and uses the learned affinity matrix to implement dynamic graph regularization constraints.<n>The results show that our model outperforms other state-of-the-art models.
- Score: 8.990462532663871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept Factorization (CF) models have attracted widespread attention due to their excellent performance in data clustering. In recent years, many variant models based on CF have achieved great success in clustering by taking into account the internal geometric manifold structure of the dataset and using graph regularization techniques. However, their clustering performance depends greatly on the construction of the initial graph structure. In order to enable adaptive learning of the graph structure of the data, we propose a Concept Factorization Based on Self-Representation and Adaptive Graph Structure Learning (CFSRAG) Model. CFSRAG learns the affinity relationship between data through a self-representation method, and uses the learned affinity matrix to implement dynamic graph regularization constraints, thereby ensuring dynamic learning of the internal geometric structure of the data. Finally, we give the CFSRAG update rule and convergence analysis, and conduct comparative experiments on four real datasets. The results show that our model outperforms other state-of-the-art models.
Related papers
- Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Graph Structure Inference with BAM: Introducing the Bilinear Attention
Mechanism [31.99564199048314]
We propose a novel neural network model for supervised graph structure learning.
The model is trained with variably shaped and coupled input data.
Our method demonstrates robust generalizability across both linear and various types of non-linear dependencies.
arXiv Detail & Related papers (2024-02-12T15:48:58Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Improving Knowledge Graph Entity Alignment with Graph Augmentation [11.1094009195297]
Entity alignment (EA) which links equivalent entities across different knowledge graphs (KGs) plays a crucial role in knowledge fusion.
In recent years, graph neural networks (GNNs) have been successfully applied in many embedding-based EA methods.
We propose graph augmentation to create two graph views for margin-based alignment learning and contrastive entity representation learning.
arXiv Detail & Related papers (2023-04-28T01:22:47Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Adaptive Attribute and Structure Subspace Clustering Network [49.040136530379094]
We propose a novel self-expressiveness-based subspace clustering network.
We first consider an auto-encoder to represent input data samples.
Then, we construct a mixed signed and symmetric structure matrix to capture the local geometric structure underlying data.
We perform self-expressiveness on the constructed attribute structure and matrices to learn their affinity graphs.
arXiv Detail & Related papers (2021-09-28T14:00:57Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Lossless Compression of Structured Convolutional Models via Lifting [14.63152363481139]
We introduce a simple and efficient technique to detect the symmetries and compress the neural models without loss of any information.
We demonstrate through experiments that such compression can lead to significant speedups of structured convolutional models.
arXiv Detail & Related papers (2020-07-13T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.