Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
- URL: http://arxiv.org/abs/2505.03424v1
- Date: Tue, 06 May 2025 11:03:19 GMT
- Title: Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
- Authors: Kirill Lukyanov, Mikhail Drobyshevskiy, Georgii Sazonov, Mikhail Soloviov, Ilya Makarov,
- Abstract summary: We introduce GNN-AID (Graph Neural Network Analysis, Interpretation, and Defense), an open-source framework designed for graph data to address this gap.<n>Built as a Python library, GNN-AID supports advanced trust methods and architectural layers, allowing users to analyze graph datasets and GNN behavior.<n>It also includes a web interface with tools for graph visualization and no-code features like an interactive model builder.
- Score: 0.09986418756990156
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing need for Trusted AI (TAI) highlights the importance of interpretability and robustness in machine learning models. However, many existing tools overlook graph data and rarely combine these two aspects into a single solution. Graph Neural Networks (GNNs) have become a popular approach, achieving top results across various tasks. We introduce GNN-AID (Graph Neural Network Analysis, Interpretation, and Defense), an open-source framework designed for graph data to address this gap. Built as a Python library, GNN-AID supports advanced trust methods and architectural layers, allowing users to analyze graph datasets and GNN behavior using attacks, defenses, and interpretability methods. GNN-AID is built on PyTorch-Geometric, offering preloaded datasets, models, and support for any GNNs through customizable interfaces. It also includes a web interface with tools for graph visualization and no-code features like an interactive model builder, simplifying the exploration and analysis of GNNs. The framework also supports MLOps techniques, ensuring reproducibility and result versioning to track and revisit analyses efficiently. GNN-AID is a flexible tool for developers and researchers. It helps developers create, analyze, and customize graph models, while also providing access to prebuilt datasets and models for quick experimentation. Researchers can use the framework to explore advanced topics on the relationship between interpretability and robustness, test defense strategies, and combine methods to protect against different types of attacks. We also show how defenses against evasion and poisoning attacks can conflict when applied to graph data, highlighting the complex connections between defense strategies. GNN-AID is available at \href{https://github.com/ispras/GNN-AID}{github.com/ispras/GNN-AID}
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - GrOVe: Ownership Verification of Graph Neural Networks using Embeddings [13.28269672097063]
Graph neural networks (GNNs) have emerged as a state-of-the-art approach to model and draw inferences from large scale graph-structured data.
Prior work has shown that GNNs are prone to model extraction attacks.
We present GrOVe, a state-of-the-art GNN model fingerprinting scheme.
arXiv Detail & Related papers (2023-04-17T19:06:56Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN [36.045702771828736]
Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data.
Recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure.
We propose an unsupervised pipeline, named STABLE, to optimize the graph structure.
arXiv Detail & Related papers (2022-06-30T10:02:32Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph
Neural Networks [15.448462928073635]
Graph neural networks (GNNs) have been increasingly deployed in various applications that involve learning on non-Euclidean data.
Recent studies show that GNNs are vulnerable to graph adversarial attacks.
We propose GARNET, a scalable spectral method to boost the adversarial robustness of GNN models.
arXiv Detail & Related papers (2022-01-30T06:32:44Z) - Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation [24.665468294430216]
We develop a multi-purpose interpretation framework by acquiring a mask that indicates topology perturbations of the input graphs.
We pack the framework into an interactive visualization system (GNNViz) which can fulfill multiple purposes: Preserve,Promote, or Attack GNN's predictions.
arXiv Detail & Related papers (2021-03-25T16:04:08Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
Adversary attacks can be easily fooled by small perturbation on the input.
Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability.
In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods.
arXiv Detail & Related papers (2020-03-02T04:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.