MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
- URL: http://arxiv.org/abs/2505.03427v1
- Date: Tue, 06 May 2025 11:07:26 GMT
- Title: MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
- Authors: Mouath Abu Daoud, Chaimae Abouzahir, Leen Kharouf, Walid Al-Eisawi, Nizar Habash, Farah E. Shamout,
- Abstract summary: This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks.<n>We first constructed the dataset using past medical exams and publicly available datasets.<n>We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation.
- Score: 7.822971505079421
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.
Related papers
- Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text [10.071956824618418]
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly.<n>Most existing benchmarks rely on medical exam-style questions or PubMed-derived text.<n>We present BRIDGE, a comprehensive benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages.
arXiv Detail & Related papers (2025-04-28T04:13:18Z) - WorldMedQA-V: a multilingual, multimodal medical examination dataset for multimodal language models evaluation [4.149844666297669]
Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide.
Existing datasets are largely text-only and available in a limited subset of languages and countries.
WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries.
arXiv Detail & Related papers (2024-10-16T16:31:24Z) - A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? [33.70022886795487]
OpenAI's o1 stands out as the first model with a chain-of-thought technique using reinforcement learning strategies.
This report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality.
arXiv Detail & Related papers (2024-09-23T17:59:43Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - Towards Building Multilingual Language Model for Medicine [54.1382395897071]
We construct a multilingual medical corpus, containing approximately 25.5B tokens encompassing 6 main languages.
We propose a multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench.
Our final model, MMed-Llama 3, with only 8B parameters, achieves superior performance compared to all other open-source models on both MMedBench and English benchmarks.
arXiv Detail & Related papers (2024-02-21T17:47:20Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains [8.448541067852]
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years.
Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
We introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model.
arXiv Detail & Related papers (2024-02-15T23:39:04Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.