A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?
- URL: http://arxiv.org/abs/2409.15277v1
- Date: Mon, 23 Sep 2024 17:59:43 GMT
- Title: A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?
- Authors: Yunfei Xie, Juncheng Wu, Haoqin Tu, Siwei Yang, Bingchen Zhao, Yongshuo Zong, Qiao Jin, Cihang Xie, Yuyin Zhou,
- Abstract summary: OpenAI's o1 stands out as the first model with a chain-of-thought technique using reinforcement learning strategies.
This report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality.
- Score: 33.70022886795487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited remarkable capabilities across various domains and tasks, pushing the boundaries of our knowledge in learning and cognition. The latest model, OpenAI's o1, stands out as the first LLM with an internalized chain-of-thought technique using reinforcement learning strategies. While it has demonstrated surprisingly strong capabilities on various general language tasks, its performance in specialized fields such as medicine remains unknown. To this end, this report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality. Specifically, our evaluation encompasses 6 tasks using data from 37 medical datasets, including two newly constructed and more challenging question-answering (QA) tasks based on professional medical quizzes from the New England Journal of Medicine (NEJM) and The Lancet. These datasets offer greater clinical relevance compared to standard medical QA benchmarks such as MedQA, translating more effectively into real-world clinical utility. Our analysis of o1 suggests that the enhanced reasoning ability of LLMs may (significantly) benefit their capability to understand various medical instructions and reason through complex clinical scenarios. Notably, o1 surpasses the previous GPT-4 in accuracy by an average of 6.2% and 6.6% across 19 datasets and two newly created complex QA scenarios. But meanwhile, we identify several weaknesses in both the model capability and the existing evaluation protocols, including hallucination, inconsistent multilingual ability, and discrepant metrics for evaluation. We release our raw data and model outputs at https://ucsc-vlaa.github.io/o1_medicine/ for future research.
Related papers
- Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering [5.065947993017158]
Large Language Models (LLMs) have demonstrated an impressive ability to encode knowledge during pre-training on large text corpora.
We examine the capability of LLMs to exhibit medical knowledge recall by constructing a novel dataset derived from systematic reviews.
arXiv Detail & Related papers (2024-06-09T16:33:28Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.