論文の概要: A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2505.03431v1
- Date: Tue, 06 May 2025 11:15:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.347273
- Title: A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution
- Title(参考訳): ハイパースペクトル画像超解像のための核融合誘導インセプションネットワーク
- Authors: Usman Muhammad, Jorma Laaksonen,
- Abstract要約: 我々はFusion-Guided Inception Network (FGIN)と呼ばれる単一画像の超解像モデルを提案する。
具体的には、まずスペクトル空間融合モジュールを用いて、スペクトル情報と空間情報を効果的に統合する。
インセプションのような階層的特徴抽出戦略は、マルチスケール空間依存をキャプチャするために用いられる。
再構成品質をさらに向上するため,バイリニアと奥行き分離可能な畳み込みを組み合わせた最適化されたアップサンプリングモジュールを組み込んだ。
- 参考スコア(独自算出の注目度): 4.487807378174191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fusion of low-spatial-resolution hyperspectral images (HSIs) with high-spatial-resolution conventional images (e.g., panchromatic or RGB) has played a significant role in recent advancements in HSI super-resolution. However, this fusion process relies on the availability of precise alignment between image pairs, which is often challenging in real-world scenarios. To mitigate this limitation, we propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN). Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information at an early stage. Next, an Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies, followed by a dedicated multi-scale fusion block. To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear interpolation with depthwise separable convolutions. Experimental evaluations on two publicly available hyperspectral datasets demonstrate the competitive performance of our method.
- Abstract(参考訳): 低空間分解能ハイパースペクトル画像(HSI)と高空間分解能の従来の画像(例えば、パンクロマティック画像、RGB画像)との融合は、近年のHSI超解像の進展において重要な役割を担っている。
しかし、この融合プロセスは、実世界のシナリオではしばしば困難であるイメージペア間の正確なアライメントの可用性に依存している。
この制限を緩和するために,Fusion-Guided Inception Network (FGIN)と呼ばれる単一画像の超解像モデルを提案する。
具体的には、まずスペクトル空間融合モジュールを用いて、早期にスペクトル情報と空間情報を効果的に統合する。
次に、インセプションのような階層的特徴抽出戦略を用いて、マルチスケールの空間依存を捕捉し、その後に専用のマルチスケールの融合ブロックが続く。
両線形補間と奥行き分離可能な畳み込みを組み合わせた最適化されたアップサンプリングモジュールを組み込んだ。
2つの公開ハイパースペクトルデータセットの実験的評価により,本手法の競合性能が示された。
関連論文リスト
- Unaligned RGB Guided Hyperspectral Image Super-Resolution with Spatial-Spectral Concordance [18.045877106333766]
超高分解能画像は空間分解能を改善することを目的としているが、その性能は高分解能比で制限されることが多い。
非整合参照RGBガイド付きHSI SRのためのフレームワークを導入し、不正確なアライメントと不正確な対話性の問題に対処する。
本手法は,定量評価と定性評価の両面において,最先端の手法より優れている。
論文 参考訳(メタデータ) (2025-05-04T13:29:31Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
本稿では,空間領域における連続画素座標とスペクトル領域における連続波長の両方の関数として,画像を表すニューラル暗黙モデルを提案する。
SSIFは空間分解能とスペクトル分解能の両方によく対応していることを示す。
ダウンストリームタスクのパフォーマンスを1.7%-7%向上させる高解像度画像を生成することができる。
論文 参考訳(メタデータ) (2023-09-30T15:23:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
本稿では,CycFusionと呼ばれるサイクル一貫性に基づく教師なしHSIとMSIの融合モデルを提案する。
CycFusion は低空間分解能 HSI (LrHSI) と高空間分解能 MSI (HrMSI) の領域変換を学習する
いくつかのデータセットで行った実験により,提案手法は非教師なし核融合法よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2023-07-07T06:47:15Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
低分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させるトランスフォーマーに基づくネットワークを設計する。
LR-HSIは主スペクトル構造を持つため、ネットワークは空間的詳細推定に重点を置いている。
様々な実験と品質指標は、他の最先端手法と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2021-09-05T14:00:34Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
本稿では,ハイブリットレンズを用いた高分解能光場(LF)画像の再構成問題について検討する。
本稿では,入力の特徴を包括的に活用できる新しいエンドツーエンド学習手法を提案する。
我々のフレームワークは、高解像度なLFデータ取得のコストを削減し、LFデータストレージと送信の恩恵を受ける可能性がある。
論文 参考訳(メタデータ) (2021-02-14T06:44:47Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。