Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
- URL: http://arxiv.org/abs/2505.03432v1
- Date: Tue, 06 May 2025 11:17:15 GMT
- Title: Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
- Authors: Stefano Bruno, Sotirios Sabanis,
- Abstract summary: Score-based Generative Models (SGMs) approximate a data distribution by perturbing it with Gaussian noise and subsequently denoising it via a learned diffusion process.<n>We establish the first non-asymotic Wasserstein-2 convergence guarantees for SGMs targeting semi-one order with potentially discontinuous gradients.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based Generative Models (SGMs) approximate a data distribution by perturbing it with Gaussian noise and subsequently denoising it via a learned reverse diffusion process. These models excel at modeling complex data distributions and generating diverse samples, achieving state-of-the-art performance across domains such as computer vision, audio generation, reinforcement learning, and computational biology. Despite their empirical success, existing Wasserstein-2 convergence analysis typically assume strong regularity conditions-such as smoothness or strict log-concavity of the data distribution-that are rarely satisfied in practice. In this work, we establish the first non-asymptotic Wasserstein-2 convergence guarantees for SGMs targeting semiconvex distributions with potentially discontinuous gradients. Our upper bounds are explicit and sharp in key parameters, achieving optimal dependence of $O(\sqrt{d})$ on the data dimension $d$ and convergence rate of order one. The framework accommodates a wide class of practically relevant distributions, including symmetric modified half-normal distributions, Gaussian mixtures, double-well potentials, and elastic net potentials. By leveraging semiconvexity without requiring smoothness assumptions on the potential such as differentiability, our results substantially broaden the theoretical foundations of SGMs, bridging the gap between empirical success and rigorous guarantees in non-smooth, complex data regimes.
Related papers
- Minimax Optimality of the Probability Flow ODE for Diffusion Models [8.15094483029656]
This work develops the first end-to-end theoretical framework for deterministic ODE-based samplers.<n>We propose a smooth regularized score estimator that simultaneously controls both the $L2$ score error and the associated mean Jacobian error.<n>We demonstrate that the resulting sampler achieves the minimax rate in total variation distance, modulo logarithmic factors.
arXiv Detail & Related papers (2025-03-12T17:51:29Z) - Beyond Log-Concavity and Score Regularity: Improved Convergence Bounds for Score-Based Generative Models in W2-distance [0.0]
We present a novel framework for analyzing convergence in Score-based Generative Models (SGMs)<n>We show that weak log-concavity of the data distribution evolves into log-concavity over time.<n>Our approach circumvents the need for stringent regularity conditions on the score function and its regularity.
arXiv Detail & Related papers (2025-01-04T14:33:27Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) is a generative model that aims to learn straight flow trajectories from noise to data.<n>We provide a theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.<n>We present general conditions guaranteeing uniqueness and straightness of 1-RF, which is in line with previous empirical findings.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
for Uncertainty Quantification [4.728311759896569]
We propose a novel, succinct, and effective approach for distribution prediction to quantify uncertainty in machine learning.
It incorporates adaptively flexible distribution prediction of $mathbbP(mathbfy|mathbfX=x)$ in regression tasks.
On extensive regression tasks from UCI datasets, we show that EMQ achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-26T11:45:32Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.