Convergence for score-based generative modeling with polynomial
complexity
- URL: http://arxiv.org/abs/2206.06227v2
- Date: Wed, 3 May 2023 17:51:05 GMT
- Title: Convergence for score-based generative modeling with polynomial
complexity
- Authors: Holden Lee and Jianfeng Lu and Yixin Tan
- Abstract summary: We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
- Score: 9.953088581242845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based generative modeling (SGM) is a highly successful approach for
learning a probability distribution from data and generating further samples.
We prove the first polynomial convergence guarantees for the core mechanic
behind SGM: drawing samples from a probability density $p$ given a score
estimate (an estimate of $\nabla \ln p$) that is accurate in $L^2(p)$. Compared
to previous works, we do not incur error that grows exponentially in time or
that suffers from a curse of dimensionality. Our guarantee works for any smooth
distribution and depends polynomially on its log-Sobolev constant. Using our
guarantee, we give a theoretical analysis of score-based generative modeling,
which transforms white-noise input into samples from a learned data
distribution given score estimates at different noise scales. Our analysis
gives theoretical grounding to the observation that an annealed procedure is
required in practice to generate good samples, as our proof depends essentially
on using annealing to obtain a warm start at each step. Moreover, we show that
a predictor-corrector algorithm gives better convergence than using either
portion alone.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - $O(d/T)$ Convergence Theory for Diffusion Probabilistic Models under Minimal Assumptions [6.76974373198208]
We establish a fast convergence theory for a popular SDE-based sampler under minimal assumptions.
Our analysis shows that, provided $ell_2$-accurate estimates of the score functions, the total variation distance between the target and generated distributions is upper bounded by $O(d/T)$.
This is achieved through a novel set of analytical tools that provides a fine-grained characterization of how the error propagates at each step of the reverse process.
arXiv Detail & Related papers (2024-09-27T17:59:10Z) - Learning Mixtures of Gaussians Using Diffusion Models [9.118706387430883]
We give a new algorithm for learning mixtures of $k$ Gaussians to TV error.
Our approach is analytic and relies on the framework of diffusion models.
arXiv Detail & Related papers (2024-04-29T17:00:20Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Learning Entangled Single-Sample Distributions via Iterative Trimming [28.839136703139225]
We analyze a simple and computationally efficient method based on iteratively trimming samples and re-estimating the parameter on the trimmed sample set.
We show that the method in logarithmic iterations outputs an estimation whose error only depends on the noise level of the $lceil alpha n rceil$-th noisiest data point.
arXiv Detail & Related papers (2020-04-20T18:37:43Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.