Faster MoE LLM Inference for Extremely Large Models
- URL: http://arxiv.org/abs/2505.03531v1
- Date: Tue, 06 May 2025 13:41:17 GMT
- Title: Faster MoE LLM Inference for Extremely Large Models
- Authors: Haoqi Yang, Luohe Shi, Qiwei Li, Zuchao Li, Ping Wang, Bo Du, Mengjia Shen, Hai Zhao,
- Abstract summary: Fine-grained MoE models are gaining popularity, yet research on them remains limited.<n>Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios.<n>Our method can increase throughput by at least 10% without any performance degradation.
- Score: 75.57674991584608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse Mixture of Experts (MoE) large language models (LLMs) are gradually becoming the mainstream approach for ultra-large-scale models. Existing optimization efforts for MoE models have focused primarily on coarse-grained MoE architectures. With the emergence of DeepSeek Models, fine-grained MoE models are gaining popularity, yet research on them remains limited. Therefore, we want to discuss the efficiency dynamic under different service loads. Additionally, fine-grained models allow deployers to reduce the number of routed experts, both activated counts and total counts, raising the question of how this reduction affects the trade-off between MoE efficiency and performance. Our findings indicate that while deploying MoE models presents greater challenges, it also offers significant optimization opportunities. Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios, with only minor performance degradation. Reducing the total number of experts provides limited efficiency gains but results in severe performance degradation. Our method can increase throughput by at least 10\% without any performance degradation. Overall, we conclude that MoE inference optimization remains an area with substantial potential for exploration and improvement.
Related papers
- Efficiently Editing Mixture-of-Experts Models with Compressed Experts [22.868004724309845]
We propose the concept of compressed experts, lightweight modules that serve as compact representations of full experts.<n>Our approach preserves the most important experts while replacing other auxiliary activated experts with compressed experts.
arXiv Detail & Related papers (2025-03-01T22:00:03Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
Building mixture-of-experts (MoE) architecture for Low-rank adaptation (LoRA) is emerging as a potential direction in parameter-efficient fine-tuning (PEFT)<n>We first conduct qualitative analysis to indicate that experts collapse to similar representations in vanilla MoE, limiting the capacity of modular design and computational efficiency.<n>Motivated by these findings, we propose Orthogonal Mixture-of-Experts (OMoE)<n>Our method is simple and alleviates memory bottlenecks, as it incurs minimal experts compared to vanilla MoE models.
arXiv Detail & Related papers (2025-01-17T09:27:08Z) - AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference [13.263938935671646]
AdapMoE is an algorithm-system co-design framework for efficient MoE inference.
AdapMoE features adaptive expert gating and management to reduce the on-demand loading overheads.
We show AdapMoE consistently outperforms existing techniques, reducing the average number of activated experts by 25% and achieving a 1.35x speedup without degradation accuracy.
arXiv Detail & Related papers (2024-08-19T03:27:15Z) - Mixture of A Million Experts [1.240096657086732]
This paper introduces PEER, a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of experts.
Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off.
arXiv Detail & Related papers (2024-07-04T20:59:20Z) - Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs [30.07344792770254]
We introduce a gradient-free evolutionary strategy named EEP (Efficient Expert Pruning) to enhance the pruning of experts in SMoE models.
EEP relies solely on model inference (i.e., no gradient computation) and greater sparsity while maintaining or even improving performance on downstream tasks.
We demonstrate that pruning up to 75% of experts in Mixtral $8times7$B-Instruct results in a substantial reduction in parameters with minimal performance loss.
arXiv Detail & Related papers (2024-07-01T03:57:35Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion [4.716845031095804]
Transformer models can face practical limitations due to their high computational requirements.
Such models exhibit significant activation sparsity, which can be leveraged to reduce the inference cost by converting parts of the network into equivalent Mixture-of-Experts (MoE) layers.
We demonstrate that the efficiency of the conversion can be significantly enhanced by a proper regularization of the activation sparsity of the base model.
arXiv Detail & Related papers (2023-10-06T16:34:51Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) model is powerful for large-scale pre-training.
MoE is hard to be deployed on cloud or mobile environment.
We propose a general method to progressively drop the non-professional experts for the target downstream task.
arXiv Detail & Related papers (2022-06-01T07:09:01Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.