Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming
- URL: http://arxiv.org/abs/2505.03552v2
- Date: Wed, 06 Aug 2025 13:30:51 GMT
- Title: Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming
- Authors: Linus Langenkamp, Philip Hannebohm, Bernhard Bachmann,
- Abstract summary: We propose a novel approach for training Physics-enhanced Neural ODEs (PeN-ODEs) by expressing the training process as a dynamic optimization problem.<n>The full model, including neural components, is discretized using a high-order implicit Runge-Kutta method with flipped Legendre-Gauss-Radau points.<n>This formulation enables simultaneous optimization of network parameters and state trajectories, addressing key limitations of ODE solver-based training in terms of stability, runtime, and accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach for training Physics-enhanced Neural ODEs (PeN-ODEs) by expressing the training process as a dynamic optimization problem. The full model, including neural components, is discretized using a high-order implicit Runge-Kutta method with flipped Legendre-Gauss-Radau points, resulting in a large-scale nonlinear program (NLP) efficiently solved by state-of-the-art NLP solvers such as Ipopt. This formulation enables simultaneous optimization of network parameters and state trajectories, addressing key limitations of ODE solver-based training in terms of stability, runtime, and accuracy. Extending on a recent direct collocation-based method for Neural ODEs, we generalize to PeN-ODEs, incorporate physical constraints, and present a custom, parallelized, open-source implementation. Benchmarks on a Quarter Vehicle Model and a Van-der-Pol oscillator demonstrate superior accuracy, speed, generalization with smaller networks compared to other training techniques. We also outline a planned integration into OpenModelica to enable accessible training of Neural DAEs.
Related papers
- PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations [23.04840527974364]
We propose a novel physics guided multi-step neural operator (PMNO) architecture to address challenges in long-horizon prediction of complex physical systems.<n>The PMNO framework replaces the single-step input with multi-step historical data in the forward pass and introduces an implicit time-stepping scheme during backpropagation.<n>We demonstrate the superior predictive performance of PMNO predictor across a diverse range of physical systems.
arXiv Detail & Related papers (2025-06-02T12:33:50Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
Training Neural Ordinary Differential Equations (Neural ODEs) requires solving differential equations at each epoch, leading to high computational costs.<n>In particular, we employ a collocation-based, fully discretized formulation and use IPOPT-a solver for large-scale nonlinear optimization.<n>Our results show significant potential for (collocation-based) simultaneous Neural ODE training pipelines.
arXiv Detail & Related papers (2025-02-21T18:10:26Z) - Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks? [1.8175282137722093]
We compare PINNs and PIKANs on key challenging linear, stiff, multi-scale non-linear PDEs including Burgers, Allen-Cashinsky, Ginzburg-Landau equations.<n>Our results reveal improvements without the use of any other enhancements typically employed in PINNs and PIKANs.
arXiv Detail & Related papers (2025-01-22T21:19:42Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
arXiv Detail & Related papers (2024-08-19T13:02:06Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
We show that mathematical model order reduction methods can be used for compressing and accelerating Neural ODEs.
We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and operations as layers of the neural network.
arXiv Detail & Related papers (2021-05-28T19:27:09Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.