Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data
- URL: http://arxiv.org/abs/2408.11077v4
- Date: Tue, 8 Oct 2024 03:29:31 GMT
- Title: Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data
- Authors: Kai-liang Lu, Yu-meng Su, Zhuo Bi, Cheng Qiu, Wen-jun Zhang,
- Abstract summary: This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
- Score: 6.3295494018089435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper compared physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs) through literature investigation and experimental validation. We focused on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs (ODEs/PDEs). The working mechanism and its accuracy and efficiency were experimentally verified by solving typical linear and non-linear oscillator ODEs. We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms. PINN greatly reduces the need for labeled data: when the nonlinearity of the ODE is weak, a very small amount of supervised training data plus a few unsupervised collocation points are sufficient to predict the solution; in the minimalist case, only one or two training points (with initial values) are needed for first- or second-order ODEs, respectively. We also find that, with the aid of collocation points and the use of physical information, PINN has the ability to extrapolate data outside the time domain of the training set, and especially is robust to noisy data, thus with enhanced generalization capabilities. Training is accelerated when the gains obtained along with the reduction in the amount of data outweigh the delay caused by the increase in the loss function terms. The soft-constrained PINN can easily impose a physical law (e.g., conservation of energy) constraint by adding a regularization term to the total loss function, thus improving the solution performance to ODEs that obey this physical law. Furthermore, PINN can also be used for stiff ODEs, PDEs, and other types of DEs, and is becoming a favorable catalyst for the era of Digital Twins.
Related papers
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
"AI for Science" aims to solve fundamental scientific problems using AI techniques.
In this work we explore the possibility of changing the model being trained from being just a neural network to being a non-linear transformation of it.
This reduces the number of terms in the loss function than the standard PINN losses.
arXiv Detail & Related papers (2024-07-30T11:19:48Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
We propose characteristic-informed neural networks (CINN) for solving forward and inverse problems involving hyperbolic PDEs.
CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss.
Preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions.
arXiv Detail & Related papers (2022-12-28T18:38:53Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems.
We propose a new PINN architecture, called Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics.
arXiv Detail & Related papers (2022-08-23T09:20:42Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs [4.560331122656578]
Partial Differential Equations (PDEs) are notoriously difficult to solve.
In this paper, we propose to approach the solution of PDEs based on a novel technique that combines the advantages of two recently emerging machine learning based approaches.
arXiv Detail & Related papers (2021-09-15T08:10:23Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.