Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models
- URL: http://arxiv.org/abs/2505.03569v1
- Date: Tue, 06 May 2025 14:27:01 GMT
- Title: Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models
- Authors: Mishal Fatima, Steffen Jung, Margret Keuper,
- Abstract summary: Backgrounds in images play a major role in contributing to spurious correlations among different data points.<n>In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions.
- Score: 17.331413720045898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change.
Related papers
- Visual Context-Aware Person Fall Detection [52.49277799455569]
We present a segmentation pipeline to semi-automatically separate individuals and objects in images.
Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms.
We demonstrate that object-specific contextual transformations during training effectively mitigate this challenge.
arXiv Detail & Related papers (2024-04-11T19:06:36Z) - TopNet: Transformer-based Object Placement Network for Image Compositing [43.14411954867784]
Local clues in background images are important to determine the compatibility of placing objects with certain locations/scales.
We propose to learn the correlation between object features and all local background features with a transformer module.
Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass.
arXiv Detail & Related papers (2023-04-06T20:58:49Z) - DisPositioNet: Disentangled Pose and Identity in Semantic Image
Manipulation [83.51882381294357]
DisPositioNet is a model that learns a disentangled representation for each object for the task of image manipulation using scene graphs.
Our framework enables the disentanglement of the variational latent embeddings as well as the feature representation in the graph.
arXiv Detail & Related papers (2022-11-10T11:47:37Z) - ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object
Detection [24.085715205081385]
We denote size of an object as the number of pixels it covers in an image and size imbalance as the over-representation of certain sizes of objects in a dataset.
We propose a novel ARchitectUre-agnostic BAlanced Loss (ARUBA) that can be applied as a plugin on top of any object detection model.
arXiv Detail & Related papers (2022-10-10T11:28:16Z) - Vision Models Are More Robust And Fair When Pretrained On Uncurated
Images Without Supervision [38.22842778742829]
Discriminative self-supervised learning allows training models on any random group of internet images.
We train models on billions of random images without any data pre-processing or prior assumptions about what we want the model to learn.
We extensively study and validate our model performance on over 50 benchmarks including fairness, to distribution shift, geographical diversity, fine grained recognition, image copy detection and many image classification datasets.
arXiv Detail & Related papers (2022-02-16T22:26:47Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - SI-Score: An image dataset for fine-grained analysis of robustness to
object location, rotation and size [95.00667357120442]
Changing the object location, rotation and size may affect the predictions in non-trivial ways.
We perform a fine-grained analysis of robustness with respect to these factors of variation using SI-Score, a synthetic dataset.
arXiv Detail & Related papers (2021-04-09T05:00:49Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z) - Rethinking Natural Adversarial Examples for Classification Models [43.87819913022369]
ImageNet-A is a famous dataset of natural adversarial examples.
We validated the hypothesis by reducing the background influence in ImageNet-A examples with object detection techniques.
Experiments showed that the object detection models with various classification models as backbones obtained much higher accuracy than their corresponding classification models.
arXiv Detail & Related papers (2021-02-23T14:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.