Graph Drawing for LLMs: An Empirical Evaluation
- URL: http://arxiv.org/abs/2505.03678v1
- Date: Tue, 06 May 2025 16:23:42 GMT
- Title: Graph Drawing for LLMs: An Empirical Evaluation
- Authors: Walter Didimo, Fabrizio Montecchiani, Tommaso Piselli,
- Abstract summary: We focus on usage scenarios that rely on the visual modality, feeding the model with a drawing of the graph under analysis.<n>We investigate how the model's performance is affected by the chosen layout paradigm, the aesthetics of the drawing, and the prompting technique used for the queries.
- Score: 2.9099452901745644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our work contributes to the fast-growing literature on the use of Large Language Models (LLMs) to perform graph-related tasks. In particular, we focus on usage scenarios that rely on the visual modality, feeding the model with a drawing of the graph under analysis. We investigate how the model's performance is affected by the chosen layout paradigm, the aesthetics of the drawing, and the prompting technique used for the queries. We formulate three corresponding research questions and present the results of a thorough experimental analysis. Our findings reveal that choosing the right layout paradigm and optimizing the readability of the input drawing from a human perspective can significantly improve the performance of the model on the given task. Moreover, selecting the most effective prompting technique is a challenging yet crucial task for achieving optimal performance.
Related papers
- GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks [15.147178364098034]
We present Graph Omni, a benchmark framework for evaluating graph reasoning capabilities of LLMs.<n>Our findings emphasize that no single serialization or prompting strategy consistently outperforms others.<n>Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings.
arXiv Detail & Related papers (2025-04-17T09:01:16Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
This paper explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR)
We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos.
arXiv Detail & Related papers (2024-03-12T00:02:03Z) - Vision-Enhanced Semantic Entity Recognition in Document Images via
Visually-Asymmetric Consistency Learning [19.28860833813788]
Existing models commonly train a visual encoder with weak cross-modal supervision signals.
We propose a novel textbfVisually-textbfAsymmetric cotextbfNsistentextbfCy textbfLearning (textscVancl) approach to capture fine-grained visual and layout features.
arXiv Detail & Related papers (2023-10-23T10:37:22Z) - Logical Bias Learning for Object Relation Prediction [3.724255294816294]
Scene graph generation (SGG) aims to automatically map an image into a semantic structural graph for better scene understanding.
It faces severe limitations in practice due to the biased data and training method.
We present a more rational and effective strategy based on causal inference for object relation prediction.
arXiv Detail & Related papers (2023-10-01T16:12:00Z) - Summary-Oriented Vision Modeling for Multimodal Abstractive
Summarization [63.320005222549646]
Multimodal abstractive summarization (MAS) aims to produce a concise summary given the multimodal data (text and vision)
We propose to improve the summary quality through summary-oriented visual features.
Experiments on 44 languages, covering mid-high, low-, and zero-resource scenarios, verify the effectiveness and superiority of the proposed approach.
arXiv Detail & Related papers (2022-12-15T09:05:26Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
We study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality.
We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances.
Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance.
arXiv Detail & Related papers (2022-03-29T19:03:10Z) - Partition Function Estimation: A Quantitative Study [25.782420501870295]
A graphical model's partition function is a central quantity of interest.
Several techniques have been proposed over the years with varying guarantees on the quality of estimates.
Our empirical study draws up a surprising observation: exact techniques are as efficient as the approximate ones.
arXiv Detail & Related papers (2021-05-24T07:25:43Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - How to Design Sample and Computationally Efficient VQA Models [53.65668097847456]
We find that representing the text as probabilistic programs and images as object-level scene graphs best satisfy these desiderata.
We extend existing models to leverage these soft programs and scene graphs to train on question answer pairs in an end-to-end manner.
arXiv Detail & Related papers (2021-03-22T01:48:16Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.