GPU Performance Portability needs Autotuning
- URL: http://arxiv.org/abs/2505.03780v2
- Date: Thu, 15 May 2025 14:26:40 GMT
- Title: GPU Performance Portability needs Autotuning
- Authors: Burkhard Ringlein, Thomas Parnell, Radu Stoica,
- Abstract summary: LLMs grow in complexity, achieving state-of-the-art performance requires tight co-design across algorithms, software, and hardware.<n>We make the case for combining just-in-time (JIT) compilation with kernel parameter autotuning.<n>Our results highlight autotuning as a promising path to unlocking model portability across GPU vendors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As LLMs grow in complexity, achieving state-of-the-art performance requires tight co-design across algorithms, software, and hardware. Today's reliance on a single dominant platform limits portability, creates vendor lock-in, and raises barriers for new AI hardware. In this work, we make the case for combining just-in-time (JIT) compilation with kernel parameter autotuning to enable portable LLM inference with state-of-the-art performance without code changes. Focusing on flash attention -- a widespread performance critical LLM kernel -- we demonstrate that this approach explores up to 15x more kernel parameter configurations, produces significantly more diverse code across multiple dimensions, and even outperforms vendor-optimized implementations by up to 230%, all while reducing kernel code size by 70x and eliminating manual code optimizations. Our results highlight autotuning as a promising path to unlocking model portability across GPU vendors.
Related papers
- CUDA-LLM: LLMs Can Write Efficient CUDA Kernels [9.287036563375617]
Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation.<n>We propose a novel framework called textbfFeature SearchReinforcement (FSR) FSR jointly optimize compilation and functional correctness.
arXiv Detail & Related papers (2025-06-10T10:51:03Z) - NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding [54.88765757043535]
This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference.<n>Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types with less than 7% computational overhead.<n>The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search.
arXiv Detail & Related papers (2025-05-28T20:43:10Z) - Liger Kernel: Efficient Triton Kernels for LLM Training [6.373771349397682]
Training Large Language Models (LLMs) efficiently at scale presents a formidable challenge, driven by their ever-increasing computational demands.<n>We introduce Liger- Kernel, an open-sourced set of Triton kernels developed specifically for LLM training.<n>With kernel optimization techniques like kernel operation fusing and input chunking, our kernels achieve on average a 20% increase in training throughput and a 60% reduction in GPU memory usage.
arXiv Detail & Related papers (2024-10-14T18:17:01Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
This paper describes the design of Mixed-precision AutoRegressive LINear kernels.
It shows that batchsizes up to 16-32 can be supported with close to maximum ($4times$) quantization speedup.
MarLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining.
arXiv Detail & Related papers (2024-08-21T16:10:41Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
Auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance.
We propose a novel parallel prompt decoding that requires only $0.0002$% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours.
Our approach demonstrates up to 2.49$times$ speedup and maintains a minimal memory overhead of just $0.0004$%.
arXiv Detail & Related papers (2024-05-28T22:19:30Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoT is a model-agnostic framework based on parallel decoding.
We show that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach.
arXiv Detail & Related papers (2023-11-14T15:56:18Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - Towards High Performance, Portability, and Productivity: Lightweight
Augmented Neural Networks for Performance Prediction [0.0]
We propose lightweight augmented neural networks for arbitrary combinations of kernel-variant- hardware.
We are able to obtain a low MAPE of 3%, significantly outperforming traditional feed-forward neural networks.
Our variant-selection approach can be used in Halide implementations to obtain up to 1.7x speedup over Halide's auto-scheduler.
arXiv Detail & Related papers (2020-03-17T02:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.