ALFRED: Ask a Large-language model For Reliable ECG Diagnosis
- URL: http://arxiv.org/abs/2505.03781v1
- Date: Wed, 30 Apr 2025 12:59:06 GMT
- Title: ALFRED: Ask a Large-language model For Reliable ECG Diagnosis
- Authors: Jin Yu, JaeHo Park, TaeJun Park, Gyurin Kim, JiHyun Lee, Min Sung Lee, Joon-myoung Kwon, Jeong Min Son, Yong-Yeon Jo,
- Abstract summary: We propose a Zero-shot ECG diagnosis framework based on RAG for ECG analysis.<n>The framework incorporates expert-curated knowledge to enhance diagnostic accuracy and explainability.
- Score: 14.920215852057236
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leveraging Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) for analyzing medical data, particularly Electrocardiogram (ECG), offers high accuracy and convenience. However, generating reliable, evidence-based results in specialized fields like healthcare remains a challenge, as RAG alone may not suffice. We propose a Zero-shot ECG diagnosis framework based on RAG for ECG analysis that incorporates expert-curated knowledge to enhance diagnostic accuracy and explainability. Evaluation on the PTB-XL dataset demonstrates the framework's effectiveness, highlighting the value of structured domain expertise in automated ECG interpretation. Our framework is designed to support comprehensive ECG analysis, addressing diverse diagnostic needs with potential applications beyond the tested dataset.
Related papers
- RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - ECG-Expert-QA: A Benchmark for Evaluating Medical Large Language Models in Heart Disease Diagnosis [8.059062779882554]
ECG-Expert-QA is a comprehensive dataset for evaluating diagnostic capabilities in electrocardiogram (ECG) interpretation.<n>It combines real-world clinical ECG data with systematically generated synthetic cases, covering 12 essential diagnostic tasks.<n>Key innovation is the support for multi-turn dialogues, enabling the development of conversational medical AI systems.
arXiv Detail & Related papers (2025-02-16T13:28:55Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.<n>This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.<n>Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
Heart disease remains a significant threat to human health.<n>Scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation.<n>We propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity.
arXiv Detail & Related papers (2025-01-10T12:55:34Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
ECG Foundation Model (ECGFounder) trained on over 10 million ECGs with 150 label categories from Harvard-Emory ECG Database.<n>ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses.<n>When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis.
arXiv Detail & Related papers (2024-10-05T12:12:02Z) - Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling [19.513904491604794]
ECG-ReGen is a retrieval-based approach for ECG-to-text report generation and question answering.
By combining pre-training with dynamic retrieval and Large Language Model (LLM)-based refinement, ECG-ReGen effectively analyzes ECG data and answers related queries.
arXiv Detail & Related papers (2024-09-13T12:50:36Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
GPT-4V's multimodal capability for medical image analysis is evaluated.
It is found that GPT-4V excels in understanding medical images and generates high-quality radiology reports.
It is found that its performance for medical visual grounding needs to be substantially improved.
arXiv Detail & Related papers (2023-10-31T11:39:09Z) - ECG-QA: A Comprehensive Question Answering Dataset Combined With
Electrocardiogram [12.167108953668464]
ECG-QA is the first dataset specifically designed for ECG analysis.
The dataset comprises a total of 70 question templates that cover a wide range of clinically relevant ECG topics.
Our dataset includes diverse ECG interpretation questions, including those that require a comparative analysis of two different ECGs.
arXiv Detail & Related papers (2023-06-21T07:14:57Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.