Perception-Informed Neural Networks: Beyond Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2505.03806v2
- Date: Sat, 24 May 2025 04:54:26 GMT
- Title: Perception-Informed Neural Networks: Beyond Physics-Informed Neural Networks
- Authors: Mehran Mazandarani, Marzieh Najariyan,
- Abstract summary: This article introduces Perception-Informed Neural Networks (PrINNs), a framework designed to incorporate perception-based information into neural networks.<n>PrINNs represent a significant step forward in bridging the gap between traditional physics-based modeling and modern data-driven approaches.
- Score: 9.137823172310194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces Perception-Informed Neural Networks (PrINNs), a framework designed to incorporate perception-based information into neural networks, addressing both systems with known and unknown physics laws or differential equations. Moreover, PrINNs extend the concept of Physics-Informed Neural Networks (PINNs) and their variants, offering a platform for the integration of diverse forms of perception precisiation, including singular, probability distribution, possibility distribution, interval, and fuzzy graph. In fact, PrINNs allow neural networks to model dynamical systems by integrating expert knowledge and perception-based information through loss functions, enabling the creation of modern data-driven models. Some of the key contributions include Mixture of Experts Informed Neural Networks (MOEINNs), which combine heterogeneous expert knowledge into the network, and Transformed-Knowledge Informed Neural Networks (TKINNs), which facilitate the incorporation of meta-information for enhanced model performance. Additionally, Fuzzy-Informed Neural Networks (FINNs) as a modern class of fuzzy deep neural networks leverage fuzzy logic constraints within a deep learning architecture, allowing online training without pre-training and eliminating the need for defuzzification. PrINNs represent a significant step forward in bridging the gap between traditional physics-based modeling and modern data-driven approaches, enabling neural networks to learn from both structured physics laws and flexible perception-based rules. This approach empowers neural networks to operate in uncertain environments, model complex systems, and discover new forms of differential equations, making PrINNs a powerful tool for advancing computational science and engineering.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
We integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference.
Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both.
We anticipate that the underlying concepts and trends generalize to more complex disease conditions.
arXiv Detail & Related papers (2022-05-12T19:04:31Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
Modelling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise.
New framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective.
PICN may become an alternative neural network solver in physics-informed machine learning.
arXiv Detail & Related papers (2022-01-26T14:35:58Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
In mechanics, the new and active field of physics-informed neural networks attempts to mitigate this disadvantage by designing deep neural networks on the basis of mechanical knowledge.
We propose a first step towards a physics-forming-in approach, which explains neural networks trained on mechanical data a posteriori.
Therein, the principal component analysis decorrelates the distributed representations in cell states of RNNs and allows the comparison to known and fundamental functions.
arXiv Detail & Related papers (2021-04-20T18:38:52Z) - Mastering high-dimensional dynamics with Hamiltonian neural networks [0.0]
A map building perspective elucidates the superiority of Hamiltonian neural networks over conventional neural networks.
The results clarify the critical relation between data, dimension, and neural network learning performance.
arXiv Detail & Related papers (2020-07-28T21:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.