論文の概要: SLOT: Structuring the Output of Large Language Models
- arxiv url: http://arxiv.org/abs/2505.04016v1
- Date: Tue, 06 May 2025 23:29:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.934397
- Title: SLOT: Structuring the Output of Large Language Models
- Title(参考訳): SLOT: 大規模言語モデルの出力を構造化する
- Authors: Darren Yow-Bang Wang, Zhengyuan Shen, Soumya Smruti Mishra, Zhichao Xu, Yifei Teng, Haibo Ding,
- Abstract要約: SLOT(Structured LLM Output Transformer)は,非構造化LCM出力を正確な構造化形式に変換するモデルに依存しない手法である。
この結果から,制約付き復号化による微調整Mistral-7Bモデルでは,ほぼ完全なスキーマ精度が得られた。
特に、Llama-3.2-1Bのようなコンパクトなモデルでさえ、はるかに大きなプロプライエタリなモデルの出力能力にマッチまたは超えることができる。
- 参考スコア(独自算出の注目度): 5.683327173793259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured outputs are essential for large language models (LLMs) in critical applications like agents and information extraction. Despite their capabilities, LLMs often generate outputs that deviate from predefined schemas, significantly hampering reliable application development. We present SLOT (Structured LLM Output Transformer), a model-agnostic approach that transforms unstructured LLM outputs into precise structured formats. While existing solutions predominantly rely on constrained decoding techniques or are tightly coupled with specific models, SLOT employs a fine-tuned lightweight language model as a post-processing layer, achieving flexibility across various LLMs and schema specifications. We introduce a systematic pipeline for data curation and synthesis alongside a formal evaluation methodology that quantifies both schema accuracy and content fidelity. Our results demonstrate that fine-tuned Mistral-7B model with constrained decoding achieves near perfect schema accuracy (99.5%) and content similarity (94.0%), outperforming Claude-3.5-Sonnet by substantial margins (+25 and +20 percentage points, respectively). Notably, even compact models like Llama-3.2-1B can match or exceed the structured output capabilities of much larger proprietary models when equipped with SLOT, enabling reliable structured generation in resource-constrained environments.
- Abstract(参考訳): 構造化出力は、エージェントや情報抽出といった重要なアプリケーションにおいて、大きな言語モデル(LLM)に必須である。
それらの機能にもかかわらず、LCMは事前に定義されたスキーマから外れた出力を生成することが多く、信頼性の高いアプリケーション開発を著しく妨げている。
SLOT(Structured LLM Output Transformer)は,非構造化LCM出力を正確な構造化形式に変換するモデルに依存しない手法である。
既存のソリューションは主に制約付き復号化技術に依存しているか、特定のモデルと密結合されているが、SLOTは後処理層として微調整された軽量言語モデルを採用し、様々なLCMやスキーマ仕様の柔軟性を実現している。
データキュレーションと合成のための体系的なパイプラインと,スキーマの精度と内容の忠実度を定量化する形式的評価手法を導入する。
この結果から,制約デコーディングによる微調整Mistral-7Bモデルでは,ほぼ完全なスキーマ精度 (99.5%) と内容類似度 (94.0%) が達成され,Claude-3.5-Sonnet よりもかなりのマージン (+25,+20ポイント) を達成できた。
特に、Llama-3.2-1BのようなコンパクトモデルでさえSLOTを搭載した場合、より大きなプロプライエタリモデルの構造的出力能力にマッチまたは超え、資源制約のある環境で信頼性の高い構造的生成を可能にする。
関連論文リスト
- Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo [90.78001821963008]
広い範囲のLMアプリケーションは、構文的制約や意味論的制約に適合するテキストを生成する必要がある。
我々は、連続モンテカルロ(SMC)に基づく制御LM生成のためのアーキテクチャを開発する。
我々のシステムはLew et al. (2023) のフレームワーク上に構築されており、言語モデル確率型プログラミング言語と統合されている。
論文 参考訳(メタデータ) (2025-04-17T17:49:40Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLMは任意の形状の大規模言語モデルの即時導出を可能にする新しいフレームワークである。
AmoebaLLMは、様々なプラットフォームやアプリケーションに適した迅速なデプロイメントを著しく促進する。
論文 参考訳(メタデータ) (2024-11-15T22:02:28Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models [42.891427362223176]
デコーダのみの変換器をベースとした大規模言語モデル(LLM)は、優れたテキスト理解能力を示している。
LLMの能力をフル活用するための新しいフレームワークを提案する。
さらに, LLM-Infused Diffusion Transformer (LI-DiT) を設計した。
論文 参考訳(メタデータ) (2024-06-17T17:59:43Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。