論文の概要: LSVG: Language-Guided Scene Graphs with 2D-Assisted Multi-Modal Encoding for 3D Visual Grounding
- arxiv url: http://arxiv.org/abs/2505.04058v3
- Date: Fri, 15 Aug 2025 03:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.362908
- Title: LSVG: Language-Guided Scene Graphs with 2D-Assisted Multi-Modal Encoding for 3D Visual Grounding
- Title(参考訳): LSVG:3次元視覚グラウンドのための2次元多モード符号化による言語ガイド型シーングラフ
- Authors: Feng Xiao, Hongbin Xu, Guocan Zhao, Wenxiong Kang,
- Abstract要約: 3Dビジュアルグラウンドティングは、自然言語で記述されたユニークなターゲットを3Dシーンでローカライズすることを目的としている。
本稿では,言語誘導型シーングラフを参照オブジェクト識別で構築する新しい3次元ビジュアルグラウンドディングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.944945244005952
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D visual grounding aims to localize the unique target described by natural languages in 3D scenes. The significant gap between 3D and language modalities makes it a notable challenge to distinguish multiple similar objects through the described spatial relationships. Current methods attempt to achieve cross-modal understanding in complex scenes via a target-centered learning mechanism, ignoring the modeling of referred objects. We propose a novel 3D visual grounding framework that constructs language-guided scene graphs with referred object discrimination to improve relational perception. The framework incorporates a dual-branch visual encoder that leverages pre-trained 2D semantics to enhance and supervise the multi-modal 3D encoding. Furthermore, we employ graph attention to promote relationship-oriented information fusion in cross-modal interaction. The learned object representations and scene graph structure enable effective alignment between 3D visual content and textual descriptions. Experimental results on popular benchmarks demonstrate our superior performance compared to state-of-the-art methods, especially in handling the challenges of multiple similar distractors.
- Abstract(参考訳): 3Dビジュアルグラウンドティングは、自然言語で記述されたユニークなターゲットを3Dシーンでローカライズすることを目的としている。
3Dと言語モダリティの間の大きなギャップは、記述された空間的関係を通して複数の類似したオブジェクトを区別することが顕著な課題である。
現在の手法は、参照オブジェクトのモデリングを無視して、ターゲット中心の学習メカニズムを通じて複雑なシーンにおけるクロスモーダルな理解を実現しようとするものである。
本稿では,言語誘導型シーングラフを参照オブジェクト識別で構築し,リレーショナル認識を改善する新しい3次元視覚基盤フレームワークを提案する。
このフレームワークには、事前訓練された2Dセマンティクスを活用してマルチモーダル3Dエンコーディングを強化し監督するデュアルブランチビジュアルエンコーダが組み込まれている。
さらに,モーダル間相互作用における関係指向情報融合を促進するために,グラフアテンションを用いる。
学習対象の表現とシーングラフ構造は、3次元視覚コンテンツとテキスト記述との効果的なアライメントを可能にする。
一般的なベンチマーク実験の結果は、最先端の手法よりも優れた性能を示しており、特に複数の類似のイントラクタの課題に対処している。
関連論文リスト
- Descrip3D: Enhancing Large Language Model-based 3D Scene Understanding with Object-Level Text Descriptions [28.185661905201222]
Descrip3Dは自然言語を使ってオブジェクト間の関係を明示的にエンコードする新しいフレームワークである。
グラウンド、キャプション、質問応答など、さまざまなタスクを統一した推論を可能にする。
論文 参考訳(メタデータ) (2025-07-19T09:19:16Z) - NVSMask3D: Hard Visual Prompting with Camera Pose Interpolation for 3D Open Vocabulary Instance Segmentation [14.046423852723615]
本稿では,3次元ガウシアン・スプレイティングに基づくハードビジュアル・プロンプト手法を導入し,対象物に関する多様な視点を創出する。
提案手法は現実的な3次元視点をシミュレートし,既存のハード・ビジュアル・プロンプトを効果的に増強する。
このトレーニングフリー戦略は、事前のハード・ビジュアル・プロンプトとシームレスに統合され、オブジェクト記述的特徴が強化される。
論文 参考訳(メタデータ) (2025-04-20T14:39:27Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3Dビジュアルグラウンドティングは、自然言語記述と対象物とを3Dシーン内で関連付けることを目的としている。
既存のアプローチでは、トレーニング用に利用可能なテキスト3Dペアが不足しているのが一般的である。
AugReferは3次元視覚的接地を前進させる新しい手法である。
論文 参考訳(メタデータ) (2025-01-16T09:57:40Z) - 3D Scene Graph Guided Vision-Language Pre-training [11.131667398927394]
3次元視覚言語推論(VL)は、3次元物理世界を自然言語記述で橋渡しする可能性から注目されている。
既存のアプローチは通常、タスク固有の高度に専門化されたパラダイムに従う。
本稿では,3次元シーングラフ誘導型視覚言語事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-27T16:10:44Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
接地型3Dシーンアベイランスは、3D環境におけるインタラクティブな領域を見つけることを目的としている。
我々は,エゴセントリックなインタラクションから3Dシーンの空き時間を確保するという,新しい課題を紹介した。
論文 参考訳(メタデータ) (2024-09-29T10:46:19Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - SeCG: Semantic-Enhanced 3D Visual Grounding via Cross-modal Graph
Attention [19.23636231942245]
設計したメモリグラフアテンション層を用いたグラフネットワークに基づくセマンティック・エンハンスド・リレーショナル学習モデルを提案する。
本手法は,従来の言語に依存しないエンコーディングを,視覚解析におけるクロスモーダルエンコーディングに置き換える。
ReferIt3D と ScanRefer のベンチマーク実験の結果,提案手法は既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-03-13T02:11:04Z) - Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding [56.00186960144545]
3Dビジュアルグラウンドティング(3D visual grounding)は、自然言語で記述された3Dシーンでオブジェクトをローカライズするタスクである。
そこで本研究では,高密度な3次元グラウンドネットワークを提案し,グラウンド性能向上を目的とした4つの新しいスタンドアローンモジュールを提案する。
論文 参考訳(メタデータ) (2023-09-08T19:27:01Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3Dビジュアルグラウンドは、自由形式の言語記述によって、ターゲットオブジェクトを3Dポイントクラウドにローカライズすることを目的としている。
3次元相対位置認識ネットワーク(3-Net)という,関係性を考慮した一段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T09:33:25Z) - Grounding 3D Object Affordance from 2D Interactions in Images [128.6316708679246]
接地した3Dオブジェクトは、3D空間内のオブジェクトの'アクション可能性'領域を見つけようとする。
人間は、実演画像やビデオを通じて、物理的世界の物体の余裕を知覚する能力を持っている。
我々は、異なるソースからのオブジェクトの領域的特徴を整合させる、インタラクション駆動の3D Affordance Grounding Network (IAG) を考案する。
論文 参考訳(メタデータ) (2023-03-18T15:37:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。