LLMs' Suitability for Network Security: A Case Study of STRIDE Threat Modeling
- URL: http://arxiv.org/abs/2505.04101v1
- Date: Wed, 07 May 2025 03:37:49 GMT
- Title: LLMs' Suitability for Network Security: A Case Study of STRIDE Threat Modeling
- Authors: AbdulAziz AbdulGhaffar, Ashraf Matrawy,
- Abstract summary: We examine the suitability of Large Language Models (LLMs) in network security.<n>We use four prompting techniques with five LLMs to perform STRIDE classification of 5G threats.<n>We point out key findings and detailed insights along with the explanation of the possible underlying factors.
- Score: 1.1970409518725493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is expected to be an integral part of next-generation AI-native 6G networks. With the prevalence of AI, researchers have identified numerous use cases of AI in network security. However, there are almost nonexistent studies that analyze the suitability of Large Language Models (LLMs) in network security. To fill this gap, we examine the suitability of LLMs in network security, particularly with the case study of STRIDE threat modeling. We utilize four prompting techniques with five LLMs to perform STRIDE classification of 5G threats. From our evaluation results, we point out key findings and detailed insights along with the explanation of the possible underlying factors influencing the behavior of LLMs in the modeling of certain threats. The numerical results and the insights support the necessity for adjusting and fine-tuning LLMs for network security use cases.
Related papers
- Large AI Model-Enabled Secure Communications in Low-Altitude Wireless Networks: Concepts, Perspectives and Case Study [92.15255222408636]
Low-altitude wireless networks (LAWNs) have the potential to revolutionize communications by supporting a range of applications.<n>We investigate some large artificial intelligence model (LAM)-enabled solutions for secure communications in LAWNs.<n>To demonstrate the practical benefits of LAMs for secure communications in LAWNs, we propose a novel LAM-based optimization framework.
arXiv Detail & Related papers (2025-08-01T01:53:58Z) - Leveraging Large Language Models for Command Injection Vulnerability Analysis in Python: An Empirical Study on Popular Open-Source Projects [5.997074223480274]
Command injection vulnerabilities are a significant security threat in dynamic languages like Python.<n>With the proven effectiveness of Large Language Models (LLMs) in code-related tasks, such as testing, researchers have explored their potential for vulnerabilities analysis.<n>This study evaluates the potential of large language models (LLMs), such as GPT-4, as an alternative approach for automated testing for vulnerability detection.
arXiv Detail & Related papers (2025-05-21T04:14:35Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.<n>Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.<n>They are open-ended models trained on diverse data without being tailored for specific downstream tasks.<n>Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)<n>We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.<n>We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
Large Language Models (LLMs) have revolutionized natural language processing, but their robustness against adversarial attacks remains a critical concern.
We present a novel white-box style attack approach that exposes vulnerabilities in leading open-source LLMs, including Llama, OPT, and T5.
arXiv Detail & Related papers (2024-05-04T22:00:28Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
Leakage of system prompts may compromise intellectual property and act as adversarial reconnaissance for an attacker.
We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting.
We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts.
arXiv Detail & Related papers (2024-04-24T23:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.