Learning from Similarity Proportion Loss for Classifying Skeletal Muscle Recovery Stages
- URL: http://arxiv.org/abs/2505.04150v2
- Date: Thu, 08 May 2025 08:45:01 GMT
- Title: Learning from Similarity Proportion Loss for Classifying Skeletal Muscle Recovery Stages
- Authors: Yu Yamaoka, Weng Ian Chan, Shigeto Seno, Soichiro Fukada, Hideo Matsuda,
- Abstract summary: We propose Ordinal Scale Learning from Similarity Proportion (OSLSP), which uses a similarity proportion loss derived from two bag combinations.<n>Our model with OSLSP outperforms large-scale pre-trained and fine-tuning models in classification tasks of skeletal muscle recovery stages.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the regeneration process of damaged muscle tissue is a fundamental analysis in muscle research to measure experimental effect sizes and uncover mechanisms behind muscle weakness due to aging and disease. The conventional approach to assessing muscle tissue regeneration involves whole-slide imaging and expert visual inspection of the recovery stages based on the morphological information of cells and fibers. There is a need to replace these tasks with automated methods incorporating machine learning techniques to ensure a quantitative and objective analysis. Given the limited availability of fully labeled data, a possible approach is Learning from Label Proportions (LLP), a weakly supervised learning method using class label proportions. However, current LLP methods have two limitations: (1) they cannot adapt the feature extractor for muscle tissues, and (2) they treat the classes representing recovery stages and cell morphological changes as nominal, resulting in the loss of ordinal information. To address these issues, we propose Ordinal Scale Learning from Similarity Proportion (OSLSP), which uses a similarity proportion loss derived from two bag combinations. OSLSP can update the feature extractor by using class proportion attention to the ordinal scale of the class. Our model with OSLSP outperforms large-scale pre-trained and fine-tuning models in classification tasks of skeletal muscle recovery stages.
Related papers
- Deep Learning Method to Predict Wound Healing Progress Based on Collagen Fibers in Wound Tissue [5.91170345684227]
We propose an innovative approach based on deep learning to predict the progression of wound healing.
Our model achieves 82% accuracy in classifying six stages of wound healing.
To the best of our knowledge, our proposed model is the first deep learning-based classification model used for predicting wound healing stages.
arXiv Detail & Related papers (2024-05-08T13:33:32Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Learning-based Bone Quality Classification Method for Spinal Metastasis [36.59899006688448]
Early detection of spinal metastasis is critical for accurate staging and optimal treatment.
In this paper, we explore a learning-based automatic bone quality classification method for spinal metastasis based on CT images.
arXiv Detail & Related papers (2024-02-14T02:53:51Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
We present our stroke lesion segmentation model based on nnU-Net framework, and apply it to the Anatomical Tracings of Lesions After Stroke dataset.
Our method took the first place in the 2022 MICCAI ATLAS Challenge with an average Dice score of 0.6667, Lesion-wise F1 score of 0.5643, Simple Lesion Count score of 4.5367, and Volume Difference score of 8804.9102.
arXiv Detail & Related papers (2022-11-11T14:17:04Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
We propose a representation learning-inspired approach for automated vertebral fracture detection.
We present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%.
arXiv Detail & Related papers (2020-08-18T10:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.