Deep Learning Method to Predict Wound Healing Progress Based on Collagen Fibers in Wound Tissue
- URL: http://arxiv.org/abs/2405.05297v1
- Date: Wed, 8 May 2024 13:33:32 GMT
- Title: Deep Learning Method to Predict Wound Healing Progress Based on Collagen Fibers in Wound Tissue
- Authors: Juan He, Xiaoyan Wang, Long Chen, Yunpeng Cai, Zhengshan Wang,
- Abstract summary: We propose an innovative approach based on deep learning to predict the progression of wound healing.
Our model achieves 82% accuracy in classifying six stages of wound healing.
To the best of our knowledge, our proposed model is the first deep learning-based classification model used for predicting wound healing stages.
- Score: 5.91170345684227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wound healing is a complex process involving changes in collagen fibers. Accurate monitoring of these changes is crucial for assessing the progress of wound healing and has significant implications for guiding clinical treatment strategies and drug screening. However, traditional quantitative analysis methods focus on spatial characteristics such as collagen fiber alignment and variance, lacking threshold standards to differentiate between different stages of wound healing. To address this issue, we propose an innovative approach based on deep learning to predict the progression of wound healing by analyzing collagen fiber features in histological images of wound tissue. Leveraging the unique learning capabilities of deep learning models, our approach captures the feature variations of collagen fibers in histological images from different categories and classifies them into various stages of wound healing. To overcome the limited availability of histological image data, we employ a transfer learning strategy. Specifically, we fine-tune a VGG16 model pretrained on the ImageNet dataset to adapt it to the classification task of histological images of wounds. Through this process, our model achieves 82% accuracy in classifying six stages of wound healing. Furthermore, to enhance the interpretability of the model, we employ a class activation mapping technique called LayerCAM. LayerCAM reveals the image regions on which the model relies when making predictions, providing transparency to the model's decision-making process. This visualization not only helps us understand how the model identifies and evaluates collagen fiber features but also enhances trust in the model's prediction results. To the best of our knowledge, our proposed model is the first deep learning-based classification model used for predicting wound healing stages.
Related papers
- Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Skin lesion segmentation and classification using deep learning and
handcrafted features [0.0]
We form a new type of image features, called hybrid features, which has stronger discrimination ability than single method features.
Our model achieves an 92.3% balanced multiclass accuracy, which is 6.8% better than the typical single method architecture for deep learning.
arXiv Detail & Related papers (2021-12-20T02:45:42Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Dermoscopic Image Classification with Neural Style Transfer [5.314466196448187]
We propose an adaptation of the Neural Style Transfer (NST) as a novel image pre-processing step for skin lesion classification problems.
We represent each dermoscopic image as the style image and transfer the style of the lesion onto a homogeneous content image.
This transfers the main variability of each lesion onto the same localized region, which allows us to integrate the generated images together and extract latent, low-rank style features.
arXiv Detail & Related papers (2021-05-17T03:50:51Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Cancer image classification based on DenseNet model [3.3516258832067067]
We propose a novel metastatic cancer image classification model based on DenseNet Block.
We evaluate the proposed approach to the slightly modified version of the PatchCamelyon (PCam) benchmark dataset.
arXiv Detail & Related papers (2020-11-23T03:05:42Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
We propose a two-stage framework for automatic classification of skin lesion images.
In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis.
In the second stage, we train a deep convolutional neural network for skin lesion classification.
arXiv Detail & Related papers (2020-04-14T22:46:20Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.