論文の概要: Retrieval Augmented Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.04163v1
- Date: Wed, 07 May 2025 06:26:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.98913
- Title: Retrieval Augmented Time Series Forecasting
- Title(参考訳): Retrieval Augmented Time Series Forecasting
- Authors: Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, Jinsung Yoon,
- Abstract要約: 時系列予測は、過去のデータを使って将来のトレンドを予測する。
RAFT(Research-augmented Time Series forecasting method)を提案する。
RAFTは平均勝利率86%で同時代のベースラインを上回っている。
- 参考スコア(独自算出の注目度): 23.032293033362752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting uses historical data to predict future trends, leveraging the relationships between past observations and available features. In this paper, we propose RAFT, a retrieval-augmented time series forecasting method to provide sufficient inductive biases and complement the model's learning capacity. When forecasting the subsequent time frames, we directly retrieve historical data candidates from the training dataset with patterns most similar to the input, and utilize the future values of these candidates alongside the inputs to obtain predictions. This simple approach augments the model's capacity by externally providing information about past patterns via retrieval modules. Our empirical evaluations on ten benchmark datasets show that RAFT consistently outperforms contemporary baselines with an average win ratio of 86%.
- Abstract(参考訳): 時系列予測は、過去の観測と利用可能な特徴の関係を利用して、過去のデータを使用して将来のトレンドを予測する。
本稿では,学習能力を補完し,十分な帰納バイアスを与える検索拡張時系列予測手法であるRAFTを提案する。
後続の時間フレームを予測する際、入力に最も近いパターンでトレーニングデータセットから履歴データ候補を直接検索し、これらの候補の将来の値を入力と共に利用して予測する。
この単純なアプローチは、検索モジュールを通じて過去のパターンに関する情報を外部に提供することによって、モデルの能力を高める。
10のベンチマークデータセットに対する実証評価の結果,RAFTは平均勝利率86%で同時代のベースラインを一貫して上回っていることがわかった。
関連論文リスト
- TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - TimeGPT in Load Forecasting: A Large Time Series Model Perspective [38.92798207166188]
機械学習モデルは、負荷予測に大きな進歩を遂げているが、過去の負荷データが不足している場合に、その予測精度は制限されている。
本稿では,負荷予測における時系列モデルの可能性について考察する。
論文 参考訳(メタデータ) (2024-04-07T09:05:09Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Split Time Series into Patches: Rethinking Long-term Series Forecasting
with Dateformer [17.454822366228335]
時間は時系列の最も重要な特徴の1つだが、あまり注目されていない。
本稿では、上記のプラクティスに従うのではなく、モデリング時間に注意を向けるDateformerを提案する。
ディザフォーマーは、40%の顕著な相対的な改善で最先端の精度を達成し、最大信頼性予測範囲を半年レベルに拡大する。
論文 参考訳(メタデータ) (2022-07-12T08:58:44Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
時系列モデルは過去の予測を正確に予測することを目的としており、そこではビジネス上の意思決定のような重要な下流のタスクに予測が使用される。
本稿では,新しい自己回帰型アーキテクチャであるVQ-ARを提案する。
論文 参考訳(メタデータ) (2022-05-31T15:43:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。