論文の概要: A Weak Supervision Learning Approach Towards an Equitable Mobility Estimation
- arxiv url: http://arxiv.org/abs/2505.04229v2
- Date: Wed, 28 May 2025 10:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 15:04:27.927888
- Title: A Weak Supervision Learning Approach Towards an Equitable Mobility Estimation
- Title(参考訳): 等価モビリティ推定に向けた弱スーパービジョン学習手法
- Authors: Theophilus Aidoo, Till Koebe, Akansh Maurya, Hewan Shrestha, Ingmar Weber,
- Abstract要約: 3m解像度の衛星画像を用いて駐車場の占有度を推定する弱い監視枠組みを提案する。
我々は、大型駐車場におけるAUCの0.92を達成するペアワイズ比較モデルを訓練する。
提案手法は、高価な高解像度画像への依存を最小限に抑え、スケーラブルな都市モビリティ解析を約束する。
- 参考スコア(独自算出の注目度): 0.9204149287692597
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The scarcity and high cost of labeled high-resolution imagery have long challenged remote sensing applications, particularly in low-income regions where high-resolution data are scarce. In this study, we propose a weak supervision framework that estimates parking lot occupancy using 3m resolution satellite imagery. By leveraging coarse temporal labels -- based on the assumption that parking lots of major supermarkets and hardware stores in Germany are typically full on Saturdays and empty on Sundays -- we train a pairwise comparison model that achieves an AUC of 0.92 on large parking lots. The proposed approach minimizes the reliance on expensive high-resolution images and holds promise for scalable urban mobility analysis. Moreover, the method can be adapted to assess transit patterns and resource allocation in vulnerable communities, providing a data-driven basis to improve the well-being of those most in need.
- Abstract(参考訳): ラベル付き高解像度画像の不足と高コスト化は、特に高解像度データが不足している低所得地域では、リモートセンシングアプリケーションに長年挑戦してきた。
本研究では,3m解像度の衛星画像を用いて駐車場の占有度を推定する弱い監視枠組みを提案する。
ドイツの主要スーパーやハードウェア店の駐車場が土曜日に満席で、日曜日に空いているという前提に基づいて、粗い時間ラベルを活用することで、大型駐車場でのAUCが0.92に達するようなペアワイズ比較モデルを訓練する。
提案手法は、高価な高解像度画像への依存を最小限に抑え、スケーラブルな都市モビリティ解析を約束する。
さらに、この手法は、脆弱なコミュニティにおけるトランジットパターンやリソース割り当てを評価するために適応することができ、データ駆動型ベースを提供することで、最も必要としている人々の幸福感を向上させることができる。
関連論文リスト
- UB-FineNet: Urban Building Fine-grained Classification Network for
Open-access Satellite Images [7.435848987082052]
オープンアクセス衛星画像を用いた都市建物のきめ細かい分類のためのディープ・ネットワーク・アプローチを提案する。
クラス不均衡の問題を緩和するために,カテゴリ情報バランスモジュール (CIBM) とコントラストスーパービジョン (CS) 技術を用いた新たなきめ細かい分類網を提案する。
11の細い建物を持つ香港のデータセットの実験では、Top-1の平均精度が60.45%の有望な分類結果が示された。
論文 参考訳(メタデータ) (2024-03-04T15:40:31Z) - Truck Parking Usage Prediction with Decomposed Graph Neural Networks [15.291200515217513]
貨物回廊のトラックの駐車は、不十分な駐車場の大きな課題に直面している。
正確な駐車場利用予測を提供することは、安全でない駐車慣行を減らすためのコスト効率の高いソリューションであることが示されている。
本稿では、州全体での駐車場利用を予測するために、Reg-TCN(Reg-TCN)を提案する。
論文 参考訳(メタデータ) (2024-01-23T17:14:01Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
本稿では,低解像度衛星画像のみを用いた建物被覆量の推定手法を提案する。
本モデルでは, 世界中の開発レベルの異なる地域において, 建築範囲の予測において最大0.968の判定係数を達成している。
論文 参考訳(メタデータ) (2023-01-04T05:19:33Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - Robust Monocular Localization in Sparse HD Maps Leveraging Multi-Task
Uncertainty Estimation [28.35592701148056]
スライドウインドウポーズグラフに基づく新しい単分子局在化手法を提案する。
効率的なマルチタスク不確実性認識モジュールを提案する。
我々の手法は、挑戦的な都市シナリオにおけるロバストで正確な6Dローカライズを可能にする。
論文 参考訳(メタデータ) (2021-10-20T13:46:15Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
公共交通機関の計画は、多くのステップを含む非常に複雑なプロセスである。
乗客の観点からの堅牢性の統合により、作業はさらに困難になる。
本稿では,機械学習の手法を用いたシナリオベースロバストネス近似の新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-10T05:52:56Z) - Real-time and Large-scale Fleet Allocation of Autonomous Taxis: A Case
Study in New York Manhattan Island [14.501650948647324]
従来のモデルは、供給(自動タクシー)と需要(トリップ)の不均衡に対処するために、利用可能な船隊を効率的に割り当てることに失敗した
艦隊配置決定をモデル化するために、制約付きマルチエージェントマルコフ決定プロセス(CMMDP)を用いる。
また、カラム生成アルゴリズムを利用して、大規模に効率性と最適性を保証する。
論文 参考訳(メタデータ) (2020-09-06T16:00:15Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
本稿では,クラウドソースによるストリートレベルの画像から重要な生活指標を予測するための,安価でスケーラブルで解釈可能なアプローチを提案する。
全国的に代表される世帯調査で収集した地上データと比較することにより,貧困,人口,健康の指標を正確に予測する上でのアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T18:12:12Z) - Efficient Poverty Mapping using Deep Reinforcement Learning [75.6332944247741]
高解像度衛星画像と機械学習は多くのサステナビリティ関連タスクで有用であることが証明されている。
高解像度画像によって得られる精度は、そのような画像が大規模に購入するのに非常にコストがかかるため、コストがかかる。
コストの高い高解像度画像の取得場所を動的に識別するために,自由な低解像度画像を用いる強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-07T18:30:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。