Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation and parameter identification
- URL: http://arxiv.org/abs/2505.04263v1
- Date: Wed, 07 May 2025 09:13:00 GMT
- Title: Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation and parameter identification
- Authors: Jan Blechschmidt, Tom-Christian Riemer, Max Winkler, Martin Stoll, Jan-F. Pietschmann,
- Abstract summary: We develop a novel physics informed deep learning approach for solving nonlinear drift-diffusion equations on metric graphs.<n>Our framework is applicable for the accurate evaluation of graph-coupled physics models.
- Score: 0.4893345190925178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel physics informed deep learning approach for solving nonlinear drift-diffusion equations on metric graphs. These models represent an important model class with a large number of applications in areas ranging from transport in biological cells to the motion of human crowds. While traditional numerical schemes require a large amount of tailoring, especially in the case of model design or parameter identification problems, physics informed deep operator networks (DeepONet) have emerged as a versatile tool for the solution of partial differential equations with the particular advantage that they easily incorporate parameter identification questions. We here present an approach where we first learn three DeepONet models for representative inflow, inner and outflow edges, resp., and then subsequently couple these models for the solution of the drift-diffusion metric graph problem by relying on an edge-based domain decomposition approach. We illustrate that our framework is applicable for the accurate evaluation of graph-coupled physics models and is well suited for solving optimization or inverse problems on these coupled networks.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport [48.06072022424773]
Many real-world systems are described only approximately with missing or unknown terms in the equations.<n>This makes the distribution of the physics model differ from the true data-generating process (DGP)<n>We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models.
arXiv Detail & Related papers (2025-06-27T13:23:27Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems.
The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-parametric Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2024-06-03T08:51:25Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
We introduce a novel physics-informed model architecture which can generalize to various discrete representations of PDE parameters and irregular domain shapes.
Inspired by deep operator neural networks, our model involves a discretization-independent learning of parameter embedding repeatedly.
Numerical results demonstrate the accuracy and efficiency of the proposed method.
arXiv Detail & Related papers (2024-04-21T12:41:30Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs.
We propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme.
We show that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios.
arXiv Detail & Related papers (2023-08-03T08:14:28Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
We study three multi-resolution schema with integral kernel operators approximated with emphMessage Passing Graph Neural Networks (MPGNNs)
To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs.
arXiv Detail & Related papers (2022-06-29T14:42:03Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.