Non-stationary Diffusion For Probabilistic Time Series Forecasting
- URL: http://arxiv.org/abs/2505.04278v2
- Date: Mon, 19 May 2025 05:58:28 GMT
- Title: Non-stationary Diffusion For Probabilistic Time Series Forecasting
- Authors: Weiwei Ye, Zhuopeng Xu, Ning Gui,
- Abstract summary: We develop a diffusion-based probabilistic forecasting framework, termed Non-stationary Diffusion (NsDiff)<n>NsDiff combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean and variance estimator.<n>Experiments conducted on nine real-world and synthetic datasets demonstrate the superior performance of NsDiff compared to existing approaches.
- Score: 3.7687375904925484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the dynamics of underlying physics and external influences, the uncertainty of time series often varies over time. However, existing Denoising Diffusion Probabilistic Models (DDPMs) often fail to capture this non-stationary nature, constrained by their constant variance assumption from the additive noise model (ANM). In this paper, we innovatively utilize the Location-Scale Noise Model (LSNM) to relax the fixed uncertainty assumption of ANM. A diffusion-based probabilistic forecasting framework, termed Non-stationary Diffusion (NsDiff), is designed based on LSNM that is capable of modeling the changing pattern of uncertainty. Specifically, NsDiff combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean and variance estimator, enabling adaptive endpoint distribution modeling. Furthermore, we propose an uncertainty-aware noise schedule, which dynamically adjusts the noise levels to accurately reflect the data uncertainty at each step and integrates the time-varying variances into the diffusion process. Extensive experiments conducted on nine real-world and synthetic datasets demonstrate the superior performance of NsDiff compared to existing approaches. Code is available at https://github.com/wwy155/NsDiff.
Related papers
- MissDDIM: Deterministic and Efficient Conditional Diffusion for Tabular Data Imputation [2.124791625488617]
We present MissDDIM, a conditional diffusion framework that adapts Denoising Diffusion Implicit Models (DDIM) for tabular imputation.<n>While sampling enables diverse completions, it also introduces output variability that complicates downstream processing.
arXiv Detail & Related papers (2025-08-05T04:55:26Z) - Effective Probabilistic Time Series Forecasting with Fourier Adaptive Noise-Separated Diffusion [13.640501360968782]
FALDA is a novel probabilistic framework for time series forecasting.<n>It incorporates a component-specific architecture, enabling tailored modeling of individual temporal components.<n>Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches.<n>FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
arXiv Detail & Related papers (2025-05-16T14:32:34Z) - Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.<n>Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.<n> Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
We introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes.<n>Experiments across scientifictemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks.
arXiv Detail & Related papers (2025-03-02T16:10:32Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
We propose a generalized diffusion model that naturally incorporates additional noise within a rigorous probabilistic framework.<n>We derive a loss function based on the evidence lower bound, establishing its theoretical equivalence to offset noise with certain adjustments.<n>Experiments on synthetic datasets demonstrate that our model effectively addresses brightness-related challenges and outperforms conventional methods in high-dimensional scenarios.
arXiv Detail & Related papers (2024-12-04T08:57:03Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
We make a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations.
Our results show DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations.
We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models.
arXiv Detail & Related papers (2023-12-08T19:04:17Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.