Effective Probabilistic Time Series Forecasting with Fourier Adaptive Noise-Separated Diffusion
- URL: http://arxiv.org/abs/2505.11306v1
- Date: Fri, 16 May 2025 14:32:34 GMT
- Title: Effective Probabilistic Time Series Forecasting with Fourier Adaptive Noise-Separated Diffusion
- Authors: Xinyan Wang, Rui Dai, Kaikui Liu, Xiangxiang Chu,
- Abstract summary: FALDA is a novel probabilistic framework for time series forecasting.<n>It incorporates a component-specific architecture, enabling tailored modeling of individual temporal components.<n>Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches.<n>FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
- Score: 13.640501360968782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a novel probabilistic framework for time series forecasting. First, we introduce the Diffusion Model for Residual Regression (DMRR) framework, which unifies diffusion-based probabilistic regression methods. Within this framework, FALDA leverages Fourier-based decomposition to incorporate a component-specific architecture, enabling tailored modeling of individual temporal components. A conditional diffusion model is utilized to estimate the future noise term, while our proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), conditions on the historical noise term to enhance denoising performance. Through mathematical analysis and empirical validation, we demonstrate that FALDA effectively reduces epistemic uncertainty, allowing probabilistic learning to primarily focus on aleatoric uncertainty. Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches across most datasets for long-term time series forecasting while achieving enhanced computational efficiency without compromising accuracy. Notably, FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
Related papers
- Bridging the Last Mile of Prediction: Enhancing Time Series Forecasting with Conditional Guided Flow Matching [9.465542901469815]
Flow matching offers faster generation, higher-quality outputs, and greater flexibility.<n> Conditional Guided Flow Matching (CGFM) extends flow matching by incorporating the outputs of an auxiliary model.<n>For time series forecasting tasks, CGFM integrates historical data as conditions and guidance, constructs two-sided conditional probability paths, and uses a general affine path to expand the space of probability paths.
arXiv Detail & Related papers (2025-07-09T18:03:31Z) - Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - Diffusion-based Time Series Forecasting for Sewerage Systems [0.3495246564946556]
We introduce a novel deep learning approach to enhance the accuracy of contextual forecasting in sewerage systems.<n>Our system excels at capturing complex correlations across diverse environmental signals, enabling robust predictions even during extreme weather events.<n>Our empirical tests on real sewerage system data confirm the model's exceptional capability to deliver reliable contextual predictions.
arXiv Detail & Related papers (2025-06-10T08:48:05Z) - A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - Non-stationary Diffusion For Probabilistic Time Series Forecasting [3.7687375904925484]
We develop a diffusion-based probabilistic forecasting framework, termed Non-stationary Diffusion (NsDiff)<n>NsDiff combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean and variance estimator.<n>Experiments conducted on nine real-world and synthetic datasets demonstrate the superior performance of NsDiff compared to existing approaches.
arXiv Detail & Related papers (2025-05-07T09:29:39Z) - ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Pro provides a robust solution that effectively captures dependencies while managing uncertainty.
Our experiments on four benchmark traffic datasets demonstrate that ProGen Pro outperforms state-of-the-art deterministic probabilistic models.
arXiv Detail & Related papers (2024-11-02T14:37:30Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
We propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM.
The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters.
arXiv Detail & Related papers (2024-10-03T03:13:15Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
We propose an innovative training method that incorporates error autocorrelation to enhance probabilistic forecasting accuracy.
Our method constructs a mini-batch as a collection of $D$ consecutive time series segments for model training.
It explicitly learns a time-varying covariance matrix over each mini-batch, encoding error correlation among adjacent time steps.
arXiv Detail & Related papers (2023-05-26T15:36:59Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.