Quantum Circuits for the Black-Scholes equations via Schrödingerisation
- URL: http://arxiv.org/abs/2505.04304v1
- Date: Wed, 07 May 2025 10:21:12 GMT
- Title: Quantum Circuits for the Black-Scholes equations via Schrödingerisation
- Authors: Shi Jin, Zihao Tang, Xu Yin, Lei Zhang,
- Abstract summary: We construct quantum circuits for the Black-Scholes equations.<n>We will conduct a thorough complexity analysis to highlight the quantum advantages of our approach.
- Score: 26.57843095806779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we construct quantum circuits for the Black-Scholes equations, a cornerstone of financial modeling, based on a quantum algorithm that overcome the cure of high dimensionality. Our approach leverages the Schr\"odingerisation technique, which converts linear partial and ordinary differential equations with non-unitary dynamics into a system evolved by unitary dynamics. This is achieved through a warped phase transformation that lifts the problem into a higher-dimensional space, enabling the simulation of the Black-Scholes equation on a quantum computer. We will conduct a thorough complexity analysis to highlight the quantum advantages of our approach compared to existing algorithms. The effectiveness of our quantum circuit is substantiated through extensive numerical experiments.
Related papers
- Quantum algorithms for solving a drift-diffusion equation [0.0]
We present three quantum algorithms for solving a drift-diffusion equation.<n>They rely on a quantum linear system solver, a quantum random walk, and the quantum Fourier transform.
arXiv Detail & Related papers (2025-05-27T14:09:14Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Simulating Non-Markovian Quantum Dynamics on NISQ Computers Using the Hierarchical Equations of Motion [0.0]
We introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems.<n>Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2024-11-18T20:41:10Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.<n>We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.<n>We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Quantum Circuits for partial differential equations via Schrödingerisation [26.7034263292622]
We present implementation of a quantum algorithm for general PDEs using Schr"odingerisation techniques.<n>We provide examples of the heat equation, and the advection equation approximated by the upwind scheme.
arXiv Detail & Related papers (2024-03-15T05:42:03Z) - Quantum simulation of Maxwell's equations via Schr\"odingersation [27.193565893837356]
We present quantum algorithms for electromagnetic fields governed by Maxwell's equations.
The algorithms are based on the Schr"odingersation approach.
Instead of qubits, the quantum algorithms can also be formulated in the continuous variable quantum framework.
arXiv Detail & Related papers (2023-08-16T14:52:35Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - Simulating Open Quantum System Dynamics on NISQ Computers with
Generalized Quantum Master Equations [0.0]
We present a quantum algorithm based on the Generalized Quantum Master Equation (GQME) approach to simulate open quantum system dynamics.
We show how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space.
arXiv Detail & Related papers (2022-09-11T22:53:16Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.<n>However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.<n>This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.