Riemannian Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2505.04338v1
- Date: Wed, 07 May 2025 11:37:16 GMT
- Title: Riemannian Denoising Diffusion Probabilistic Models
- Authors: Zichen Liu, Wei Zhang, Christof Schütte, Tiejun Li,
- Abstract summary: We propose RDDPMs for learning distributions on submanifolds of Euclidean space that are level sets of functions.<n>We provide a theoretical analysis of our method in the continuous-time limit.<n>The capability of our method is demonstrated on datasets from previous studies and on new sampled datasets.
- Score: 7.964790563398277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Riemannian Denoising Diffusion Probabilistic Models (RDDPMs) for learning distributions on submanifolds of Euclidean space that are level sets of functions, including most of the manifolds relevant to applications. Existing methods for generative modeling on manifolds rely on substantial geometric information such as geodesic curves or eigenfunctions of the Laplace-Beltrami operator and, as a result, they are limited to manifolds where such information is available. In contrast, our method, built on a projection scheme, can be applied to more general manifolds, as it only requires being able to evaluate the value and the first order derivatives of the function that defines the submanifold. We provide a theoretical analysis of our method in the continuous-time limit, which elucidates the connection between our RDDPMs and score-based generative models on manifolds. The capability of our method is demonstrated on datasets from previous studies and on new datasets sampled from two high-dimensional manifolds, i.e. $\mathrm{SO}(10)$ and the configuration space of molecular system alanine dipeptide with fixed dihedral angle.
Related papers
- Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity [7.062379942776126]
We investigate direct sampling of Euclidean diffusion models for general manifold-constrained data.<n>We reveal the multiscale singularity of the score function in the embedded space of manifold, which hinders the accuracy of diffusion-generated samples.<n>We propose two novel methods to mitigate the singularity and improve the sampling accuracy.
arXiv Detail & Related papers (2025-05-15T03:12:27Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Manifold-augmented Eikonal Equations: Geodesic Distances and Flows on
Differentiable Manifolds [5.0401589279256065]
We show how the geometry of a manifold impacts the distance field, and exploit the geodesic flow to obtain globally length-minimising curves directly.
This work opens opportunities for statistics and reduced-order modelling on differentiable manifold.
arXiv Detail & Related papers (2023-10-09T21:11:13Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Manifold Diffusion Fields [11.4726574705951]
We present an approach that unlocks learning of diffusion models of data in non-Euclidean geometries.
We define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator.
We show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
arXiv Detail & Related papers (2023-05-24T21:42:45Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
We show that convolutional filtering on a sampled manifold converges to continuous manifold filtering.
Our findings are further demonstrated empirically on a problem of navigation control.
arXiv Detail & Related papers (2022-11-20T19:09:50Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
We introduce score-based generative models (SGMs) demonstrating remarkable empirical performance.
Current SGMs make the underlying assumption that the data is supported on a Euclidean manifold with flat geometry.
This prevents the use of these models for applications in robotics, geoscience or protein modeling.
arXiv Detail & Related papers (2022-02-06T11:57:39Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.