M2Rec: Multi-scale Mamba for Efficient Sequential Recommendation
- URL: http://arxiv.org/abs/2505.04445v1
- Date: Wed, 07 May 2025 14:14:29 GMT
- Title: M2Rec: Multi-scale Mamba for Efficient Sequential Recommendation
- Authors: Qianru Zhang, Liang Qu, Honggang Wen, Dong Huang, Siu-Ming Yiu, Nguyen Quoc Viet Hung, Hongzhi Yin,
- Abstract summary: model is a novel sequential recommendation framework that integrates multi-scale Mamba with Fourier analysis, Large Language Models, and adaptive gating.<n>Experiments demonstrate that model achieves state-of-the-art performance, improving Hit Rate@10 by 3.2% over existing Mamba-based models.
- Score: 35.508076394809784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation systems aim to predict users' next preferences based on their interaction histories, but existing approaches face critical limitations in efficiency and multi-scale pattern recognition. While Transformer-based methods struggle with quadratic computational complexity, recent Mamba-based models improve efficiency but fail to capture periodic user behaviors, leverage rich semantic information, or effectively fuse multimodal features. To address these challenges, we propose \model, a novel sequential recommendation framework that integrates multi-scale Mamba with Fourier analysis, Large Language Models (LLMs), and adaptive gating. First, we enhance Mamba with Fast Fourier Transform (FFT) to explicitly model periodic patterns in the frequency domain, separating meaningful trends from noise. Second, we incorporate LLM-based text embeddings to enrich sparse interaction data with semantic context from item descriptions. Finally, we introduce a learnable gate mechanism to dynamically balance temporal (Mamba), frequency (FFT), and semantic (LLM) features, ensuring harmonious multimodal fusion. Extensive experiments demonstrate that \model\ achieves state-of-the-art performance, improving Hit Rate@10 by 3.2\% over existing Mamba-based models while maintaining 20\% faster inference than Transformer baselines. Our results highlight the effectiveness of combining frequency analysis, semantic understanding, and adaptive fusion for sequential recommendation. Code and datasets are available at: https://anonymous.4open.science/r/M2Rec.
Related papers
- FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction [35.500889115486025]
Time series prediction, a crucial task across various domains, faces significant challenges due to the inherent complexities of time series data.<n>Recent advancements in State-Space Models, such as Mamba, offer a more efficient alternative for long-term modeling, but they cannot capture multi-scale periodicity and transient dynamics effectively.<n>This paper proposes a novel framework, FLDmamba, addressing these limitations.
arXiv Detail & Related papers (2025-07-17T05:39:15Z) - FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - Routing Mamba: Scaling State Space Models with Mixture-of-Experts Projection [88.47928738482719]
Linear State Space Models (SSMs) offer remarkable performance gains in sequence modeling.<n>Recent advances, such as Mamba, further enhance SSMs with input-dependent gating and hardware-aware implementations.<n>We introduce Routing Mamba (RoM), a novel approach that scales SSM parameters using sparse mixtures of linear projection experts.
arXiv Detail & Related papers (2025-06-22T19:26:55Z) - MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MaTrRec: Uniting Mamba and Transformer for Sequential Recommendation [6.74321828540424]
Sequential recommendation systems aim to provide personalized recommendations by analyzing dynamic preferences and dependencies within user behavior sequences.
Inspired by the State Space Model (SSM)representative model, Mamba, we find that Mamba's recommendation effectiveness is limited in short interaction sequences.
We propose a new model, MaTrRec, which combines the strengths of Mamba and Transformer.
arXiv Detail & Related papers (2024-07-27T12:07:46Z) - TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification [13.110156202816112]
We propose a novel multi-view approach to capture patterns with properties like shift equivariance.<n>Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC.<n>Our approach achieves average accuracy improvements of 4.01-6.45% and 7.93% respectively, over leading TSC models.
arXiv Detail & Related papers (2024-06-06T18:05:10Z) - EchoMamba4Rec: Harmonizing Bidirectional State Space Models with Spectral Filtering for Advanced Sequential Recommendation [0.0]
Control theory emphasizes the use of state space models (SSMs) for managing long-range dependencies.
We introduce EchoMamba4Rec, a model for predicting user preferences and sequential dependencies based on historical behavior.
We show that EchoMamba significantly outperforms existing models, providing more accurate and personalized recommendations.
arXiv Detail & Related papers (2024-06-04T09:07:58Z) - Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting [5.166854384000439]
Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns.
Recently, a new state space model (SSM) named Mamba is proposed.
With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency.
arXiv Detail & Related papers (2024-04-24T09:45:48Z) - Diffusion Recommender Model [85.9640416600725]
We propose a novel Diffusion Recommender Model (named DiffRec) to learn the generative process in a denoising manner.<n>To retain personalized information in user interactions, DiffRec reduces the added noises and avoids corrupting users' interactions into pure noises like in image synthesis.
arXiv Detail & Related papers (2023-04-11T04:31:00Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.