論文の概要: Automatic Music Transcription using Convolutional Neural Networks and Constant-Q transform
- arxiv url: http://arxiv.org/abs/2505.04451v1
- Date: Wed, 07 May 2025 14:20:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.105625
- Title: Automatic Music Transcription using Convolutional Neural Networks and Constant-Q transform
- Title(参考訳): 畳み込みニューラルネットワークと定数Q変換を用いた音楽の自動転写
- Authors: Yohannis Telila, Tommaso Cucinotta, Davide Bacciu,
- Abstract要約: We design a processing pipeline that can transform classical piano audio file in.wav format to a music score representation。
音声信号から特徴を定数Q変換を用いて抽出し、結果として得られる係数を畳み込みニューラルネットワーク(CNN)モデルへの入力として利用する。
- 参考スコア(独自算出の注目度): 14.72084645157747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic music transcription (AMT) is the problem of analyzing an audio recording of a musical piece and detecting notes that are being played. AMT is a challenging problem, particularly when it comes to polyphonic music. The goal of AMT is to produce a score representation of a music piece, by analyzing a sound signal containing multiple notes played simultaneously. In this work, we design a processing pipeline that can transform classical piano audio files in .wav format into a music score representation. The features from the audio signals are extracted using the constant-Q transform, and the resulting coefficients are used as an input to the convolutional neural network (CNN) model.
- Abstract(参考訳): AMT(Automatic Music transcription)は、楽曲の音声録音を分析し、演奏中の音を検知する問題である。
AMTは、特にポリフォニック音楽に関して、難しい問題です。
AMTの目的は、同時に演奏された複数の音符を含む音声信号を解析することにより、楽曲の楽譜表現を作成することである。
本研究では、従来のピアノのオーディオファイルを.NETで変換できる処理パイプラインを設計する。
wavフォーマットを音楽スコアの表現にしました
音声信号から特徴を定数Q変換を用いて抽出し、結果として得られる係数を畳み込みニューラルネットワーク(CNN)モデルへの入力として利用する。
関連論文リスト
- Source Separation & Automatic Transcription for Music [0.0]
エンド・ツー・エンドのパイプラインを作成し、最初のオーディオ・ミックスを楽器の幹に分割し、MIDIファイルに変換し、各楽器の楽譜に書き起こす。
論文 参考訳(メタデータ) (2024-12-09T17:49:14Z) - YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation [15.9795868183084]
マルチストラクチャメント音楽の書き起こしは、ポリフォニック音楽の録音を各楽器に割り当てられた楽譜に変換することを目的としている。
本稿では、マルチストラクチャメント音楽の書き起こし強化のためのモデルの組であるYourMT3+を紹介する。
実験では,音声分離前処理装置の不要さを排除し,直接音声書き起こし機能を示す。
論文 参考訳(メタデータ) (2024-07-05T19:18:33Z) - Multitrack Music Transcription with a Time-Frequency Perceiver [6.617487928813374]
マルチトラック音楽の書き起こしは、複数の楽器の音符に入力された音声を同時に書き起こすことを目的としている。
本稿では,マルチトラック転写のための音声入力の時間周波数表現をモデル化する,新しいディープニューラルネットワークアーキテクチャPerceiver TFを提案する。
論文 参考訳(メタデータ) (2023-06-19T08:58:26Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - RMSSinger: Realistic-Music-Score based Singing Voice Synthesis [56.51475521778443]
RMS-SVSは、異なる音符タイプでリアル音楽のスコアを与えられた高品質な歌声を生成することを目的としている。
RMS-SVS方式であるRMSSingerを提案する。
RMSSingerでは,時間を要する音素の持続時間アノテーションと複雑な音素レベルのメルノートアライメントを避けるために,単語レベルのモデリングを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:57:51Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - Polyphonic pitch detection with convolutional recurrent neural networks [0.0]
本研究では,ConvLSTMによるMIDIに音声をストリームするオンラインポリフォニックピッチ検出システムについて概説する。
本システムでは,2007年のMIREXマルチF0開発セットにおいて,ベースーン,クラリネット,フルート,ホルン,オーボエのアンサンブルを83%のF値で測定した。
論文 参考訳(メタデータ) (2022-02-04T12:58:02Z) - Vector-Quantized Timbre Representation [53.828476137089325]
本稿では, スペクトル特性の近似分解を生成的特徴の集合で学習することにより, 個々の音色をより柔軟に合成することを目的とする。
音量分布の量子化表現を学習するために、大音量から切り離された離散潜在空間を持つオートエンコーダを導入する。
オーケストラ楽器と歌唱音声間の音声の翻訳結果と、ボーカルの模倣音から楽器への変換結果について詳述する。
論文 参考訳(メタデータ) (2020-07-13T12:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。