Fight Fire with Fire: Defending Against Malicious RL Fine-Tuning via Reward Neutralization
- URL: http://arxiv.org/abs/2505.04578v1
- Date: Wed, 07 May 2025 17:18:48 GMT
- Title: Fight Fire with Fire: Defending Against Malicious RL Fine-Tuning via Reward Neutralization
- Authors: Wenjun Cao,
- Abstract summary: Malicious RL fine-tuning dismantles safety guardrails with remarkable efficiency.<n>Existing defenses targeting supervised fine-tuning prove ineffective.<n>We introduce Reward Neutralization, the first defense framework specifically designed against RL fine-tuning attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) fine-tuning transforms large language models while creating a vulnerability we experimentally verify: Our experiment shows that malicious RL fine-tuning dismantles safety guardrails with remarkable efficiency, requiring only 50 steps and minimal adversarial prompts, with harmful escalating from 0-2 to 7-9. This attack vector particularly threatens open-source models with parameter-level access. Existing defenses targeting supervised fine-tuning prove ineffective against RL's dynamic feedback mechanisms. We introduce Reward Neutralization, the first defense framework specifically designed against RL fine-tuning attacks, establishing concise rejection patterns that render malicious reward signals ineffective. Our approach trains models to produce minimal-information rejections that attackers cannot exploit, systematically neutralizing attempts to optimize toward harmful outputs. Experiments validate that our approach maintains low harmful scores (no greater than 2) after 200 attack steps, while standard models rapidly deteriorate. This work provides the first constructive proof that robust defense against increasingly accessible RL attacks is achievable, addressing a critical security gap for open-weight models.
Related papers
- TooBadRL: Trigger Optimization to Boost Effectiveness of Backdoor Attacks on Deep Reinforcement Learning [38.79063331759597]
TooBadRL is a framework to systematically optimize DRL backdoor triggers along three critical axes, i.e., temporal, spatial, and magnitude.<n>We show that TooBadRL significantly improves attack success rates, while ensuring minimal degradation of normal task performance.
arXiv Detail & Related papers (2025-06-11T09:50:17Z) - MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
Model extraction attacks aim to replicate the functionality of a black-box model through query access.<n>Most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs.<n>We propose MISLEADER, a novel defense strategy that does not rely on OOD assumptions.
arXiv Detail & Related papers (2025-06-03T01:37:09Z) - Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models [69.11679786018206]
Supervised fine-tuning (SFT) aligns large language models with human intent by training them on labeled task-specific data.<n>Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer pairs.<n>We propose a novel clean-data backdoor attack for jailbreaking LLMs.
arXiv Detail & Related papers (2025-05-23T08:13:59Z) - No, of Course I Can! Deeper Fine-Tuning Attacks That Bypass Token-Level Safety Mechanisms [22.667573777927203]
We present a new fine-tuning attack that trains models to first refuse harmful requests before answering them.<n>This "refuse-then-comply" strategy bypasses shallow defenses and produces harmful responses that evade output filters.<n>Our attack received a $2000 bug bounty from OpenAI and was acknowledged as a vulnerability by Anthropic.
arXiv Detail & Related papers (2025-02-26T20:20:01Z) - Neural Antidote: Class-Wise Prompt Tuning for Purifying Backdoors in Pre-trained Vision-Language Models [42.81731204702258]
Class-wise Backdoor Prompt Tuning (CBPT) is an efficient and effective method that operates on the text prompts to indirectly purify poisoned Vision-Language Models (VLMs)<n>CBPT significantly mitigates backdoor threats while preserving model utility, e.g. an average Clean Accuracy (CA) of 58.86% and an Attack Success Rate (ASR) of 0.39% across seven mainstream backdoor attacks.
arXiv Detail & Related papers (2025-02-26T16:25:15Z) - MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents [60.30753230776882]
LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions.<n>We present MELON, a novel IPI defense that detects attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function.
arXiv Detail & Related papers (2025-02-07T18:57:49Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR)
AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context.
Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models.
arXiv Detail & Related papers (2024-10-04T18:42:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification [22.078088272837068]
Federated Learning (FL) systems are susceptible to adversarial attacks.
Current defense methods are often impractical for real-world FL systems.
We propose a novel anomaly detection strategy that is designed for real-world FL systems.
arXiv Detail & Related papers (2023-10-06T07:09:05Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Stealthy and Efficient Adversarial Attacks against Deep Reinforcement
Learning [30.46580767540506]
We introduce two novel adversarial attack techniques to emphstealthily and emphefficiently attack the Deep Reinforcement Learning agents.
The first technique is the emphcritical point attack: the adversary builds a model to predict the future environmental states and agent's actions, assesses the damage of each possible attack strategy, and selects the optimal one.
The second technique is the emphantagonist attack: the adversary automatically learns a domain-agnostic model to discover the critical moments of attacking the agent in an episode.
arXiv Detail & Related papers (2020-05-14T16:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.