Dynamic Location Search for Identifying Maximum Weighted Independent Sets in Complex Networks
- URL: http://arxiv.org/abs/2505.04674v1
- Date: Wed, 07 May 2025 10:35:53 GMT
- Title: Dynamic Location Search for Identifying Maximum Weighted Independent Sets in Complex Networks
- Authors: Enqiang Zhu, Chenkai Hao, Chanjuan Liu, Yongsheng Rao,
- Abstract summary: We introduce a novel and efficient algorithm for solving the maximum weighted independent set (MWIS) problem.<n>Given the NP-hard nature of the MWIS problem, our proposed algorithm, DynLS, incorporates three key innovations to solve it effectively.<n>Our experimental results demonstrate DynLS's superior performance, consistently delivering high-quality solutions within 1000 seconds.
- Score: 0.47248250311484113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Artificial intelligence (AI), including Generative AI, are effective at generating high-quality traffic data and optimization solutions in intelligent transportation systems (ITSs), these techniques often demand significant training time and computational resources, especially in large-scale and complex scenarios. To address this, we introduce a novel and efficient algorithm for solving the maximum weighted independent set (MWIS) problem, which can be used to model many ITSs applications, such as traffic signal control and vehicle routing. Given the NP-hard nature of the MWIS problem, our proposed algorithm, DynLS, incorporates three key innovations to solve it effectively. First, it uses a scores-based adaptive vertex perturbation (SAVP) technique to accelerate convergence, particularly in sparse graphs. Second, it includes a region location mechanism (RLM) to help escape local optima by dynamically adjusting the search space. Finally, it employs a novel variable neighborhood descent strategy, ComLS, which combines vertex exchange strategies with a reward mechanism to guide the search toward high-quality solutions. Our experimental results demonstrate DynLS's superior performance, consistently delivering high-quality solutions within 1000 seconds. DynLS outperformed five leading algorithms across 360 test instances, achieving the best solution for 350 instances and surpassing the second-best algorithm, Cyclic-Fast, by 177 instances. Moreover, DynLS matched Cyclic-Fast's convergence speed, highlighting its efficiency and practicality. This research represents a significant advancement in heuristic algorithms for the MWIS problem, offering a promising approach to aid AI techniques in optimizing intelligent transportation systems.
Related papers
- Automatically discovering heuristics in a complex SAT solver with large language models [9.96578394096009]
Satisfiability problem (SAT) is a cornerstone of computational complexity with broad industrial applications.<n>Modern SAT solvers rely on manually constrained search spaces and yield limited performance gains.<n>This work introduces a novel paradigm which effectively optimize complex SAT solvers via Large Language Models (LLMs)
arXiv Detail & Related papers (2025-07-30T17:52:25Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.<n>We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.<n>For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
We propose a multi-objective, multi-agent reinforcement learning (MARL) algorithm with high learning efficiency and low computational requirements.
We test our algorithm in an ITS environment with edge cloud computing.
Our algorithm also addresses various practical concerns with its modularized and asynchronous online training method.
arXiv Detail & Related papers (2024-03-13T18:05:16Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems [3.6406488220483326]
A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation.
We propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems.
We show that our proposed method is superior in terms of speed and the attained optimal solutions.
arXiv Detail & Related papers (2022-12-03T09:22:54Z) - ARES: An Efficient Algorithm with Recurrent Evaluation and Sampling-Driven Inference for Maximum Independent Set [48.57120672468062]
This paper introduces an efficient algorithm for the Maximum Independent Set (MIS) problem, incorporating two innovative techniques.<n>The proposed algorithm outperforms state-of-the-art algorithms in terms of solution quality, computational efficiency, and stability.
arXiv Detail & Related papers (2022-08-16T14:39:38Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.