High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems
- URL: http://arxiv.org/abs/2212.01578v1
- Date: Sat, 3 Dec 2022 09:22:54 GMT
- Title: High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems
- Authors: Teppei Otsuka, Aohan Li, Hiroki Takesue, Kensuke Inaba, Kazuyuki
Aihara, Mikio Hasegawa
- Abstract summary: A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation.
We propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems.
We show that our proposed method is superior in terms of speed and the attained optimal solutions.
- Score: 3.6406488220483326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-orthogonal multiple access (NOMA) technique is important for achieving a
high data rate in next-generation wireless communications. A key challenge to
fully utilizing the effectiveness of the NOMA technique is the optimization of
the resource allocation (RA), e.g., channel and power. However, this RA
optimization problem is NP-hard, and obtaining a good approximation of a
solution with a low computational complexity algorithm is not easy. To overcome
this problem, we propose the coherent Ising machine (CIM) based optimization
method for channel allocation in NOMA systems. The CIM is an Ising system that
can deliver fair approximate solutions to combinatorial optimization problems
at high speed (millisecond order) by operating optimization algorithms based on
mutually connected photonic neural networks. The performance of our proposed
method was evaluated using a simulation model of the CIM. We compared the
performance of our proposed method to simulated annealing, a conventional-NOMA
pairing scheme, deep Q learning based scheme, and an exhaustive search scheme.
Simulation results indicate that our proposed method is superior in terms of
speed and the attained optimal solutions.
Related papers
- Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Approaching Globally Optimal Energy Efficiency in Interference Networks
via Machine Learning [22.926877147296594]
This work presents a machine learning approach to optimize the energy efficiency (EE) in a multi-cell wireless network.
Results show that the method achieves an EE close to the optimum by the branch-and- computation testing.
arXiv Detail & Related papers (2022-11-25T08:36:34Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
We tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks.
We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA)
The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2022-06-20T18:57:50Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Deep unfolding of the weighted MMSE beamforming algorithm [9.518010235273783]
We propose the novel application of deep unfolding to the WMMSE algorithm for a MISO downlink channel.
Deep unfolding naturally incorporates expert knowledge, with the benefits of immediate and well-grounded architecture selection, fewer trainable parameters, and better explainability.
By means of simulations, we show that, in most of the settings, the unfolded WMMSE outperforms or performs equally to the WMMSE for a fixed number of iterations.
arXiv Detail & Related papers (2020-06-15T14:51:20Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.