QBD-RankedDataGen: Generating Custom Ranked Datasets for Improving Query-By-Document Search Using LLM-Reranking with Reduced Human Effort
- URL: http://arxiv.org/abs/2505.04732v1
- Date: Wed, 07 May 2025 18:43:57 GMT
- Title: QBD-RankedDataGen: Generating Custom Ranked Datasets for Improving Query-By-Document Search Using LLM-Reranking with Reduced Human Effort
- Authors: Sriram Gopalakrishnan, Sunandita Patra,
- Abstract summary: This paper introduces a process to generate custom QBD-search datasets.<n>We compare our methods in terms of cost, speed, and the human interface with the domain experts.<n>We evaluate our methods on QBD datasets from the Text Retrieval Conference (TREC)
- Score: 0.786519149320184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Query-By-Document (QBD) problem is an information retrieval problem where the query is a document, and the retrieved candidates are documents that match the query document, often in a domain or query specific manner. This can be crucial for tasks such as patent matching, legal or compliance case retrieval, and academic literature review. Existing retrieval methods, including keyword search and document embeddings, can be optimized with domain-specific datasets to improve QBD search performance. However, creating these domain-specific datasets is often costly and time-consuming. Our work introduces a process to generate custom QBD-search datasets and compares a set of methods to use in this problem, which we refer to as QBD-RankedDatagen. We provide a comparative analysis of our proposed methods in terms of cost, speed, and the human interface with the domain experts. The methods we compare leverage Large Language Models (LLMs) which can incorporate domain expert input to produce document scores and rankings, as well as explanations for human review. The process and methods for it that we present can significantly reduce human effort in dataset creation for custom domains while still obtaining sufficient expert knowledge for tuning retrieval models. We evaluate our methods on QBD datasets from the Text Retrieval Conference (TREC) and finetune the parameters of the BM25 model -- which is used in many industrial-strength search engines like OpenSearch -- using the generated data.
Related papers
- Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
We present a new benchmark for evaluating a form of retrieval-augmented generation (RAG)<n>RAG requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources.<n>We build it using a synthetic data pipeline that simulates business across product planning, development, and support stages.
arXiv Detail & Related papers (2025-06-29T08:34:59Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.<n>Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.<n>We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - CoIR: A Comprehensive Benchmark for Code Information Retrieval Models [52.61625841028781]
COIR (Code Information Retrieval Benchmark) is a benchmark specifically designed to assess code retrieval capabilities.<n>COIR comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains.<n>We evaluate nine widely used retrieval models using COIR, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems.
arXiv Detail & Related papers (2024-07-03T07:58:20Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
We present a novel retrieval framework called Database-Augmented Query representation (DAQu)
DAQu augments the original query with various (query-related) metadata across multiple tables.
We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database.
arXiv Detail & Related papers (2024-06-23T05:02:21Z) - Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation [16.170841777591345]
In most social search scenarios such as Dianping, modeling search relevance always faces two challenges.
We first take queryd with the query-based summary and the document summary without query as the input of topic relevance model.
Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data.
arXiv Detail & Related papers (2024-04-03T10:05:47Z) - Unearthing Large Scale Domain-Specific Knowledge from Public Corpora [103.0865116794534]
We introduce large models into the data collection pipeline to guide the generation of domain-specific information.<n>We refer to this approach as Retrieve-from-CC.<n>It not only collects data related to domain-specific knowledge but also mines the data containing potential reasoning procedures from the public corpus.
arXiv Detail & Related papers (2024-01-26T03:38:23Z) - MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion [39.24969189479343]
We propose a novel zero-shot query expansion framework utilizing large language models (LLMs) for mutual verification.
Our proposed method is fully zero-shot, and extensive experiments on three public benchmark datasets are conducted to demonstrate its effectiveness.
arXiv Detail & Related papers (2023-10-29T16:04:10Z) - SPM: Structured Pretraining and Matching Architectures for Relevance
Modeling in Meituan Search [12.244685291395093]
In e-commerce search, relevance between query and documents is an essential requirement for satisfying user experience.
We propose a novel two-stage pretraining and matching architecture for relevance matching with rich structured documents.
The model has already been deployed online, serving the search traffic of Meituan for over a year.
arXiv Detail & Related papers (2023-08-15T11:45:34Z) - Automated Query Generation for Evidence Collection from Web Search
Engines [2.642698101441705]
It is widely accepted that so-called facts can be checked by searching for information on the Internet.
This process requires a fact-checker to formulate a search query based on the fact and to present it to a search engine.
We ask the question as to whether it is possible to automate the first step, that of query generation.
arXiv Detail & Related papers (2023-03-15T14:32:00Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Improving Candidate Retrieval with Entity Profile Generation for
Wikidata Entity Linking [76.00737707718795]
We propose a novel candidate retrieval paradigm based on entity profiling.
We use the profile to query the indexed search engine to retrieve candidate entities.
Our approach complements the traditional approach of using a Wikipedia anchor-text dictionary.
arXiv Detail & Related papers (2022-02-27T17:38:53Z) - Improving Document Representations by Generating Pseudo Query Embeddings
for Dense Retrieval [11.465218502487959]
We design a method to mimic the queries on each of the documents by an iterative clustering process.
We also optimize the matching function with a two-step score calculation procedure.
Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
arXiv Detail & Related papers (2021-05-08T05:28:24Z) - QBSUM: a Large-Scale Query-Based Document Summarization Dataset from
Real-world Applications [20.507631900617817]
We present QBSUM, a high-quality large-scale dataset consisting of 49,000+ data samples for the task of Chinese query-based document summarization.
We also propose multiple unsupervised and supervised solutions to the task and demonstrate their high-speed inference and superior performance via both offline experiments and online A/B tests.
arXiv Detail & Related papers (2020-10-27T07:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.