Primal-dual algorithm for contextual stochastic combinatorial optimization
- URL: http://arxiv.org/abs/2505.04757v1
- Date: Wed, 07 May 2025 19:37:12 GMT
- Title: Primal-dual algorithm for contextual stochastic combinatorial optimization
- Authors: Louis Bouvier, Thibault Prunet, Vincent Leclère, Axel Parmentier,
- Abstract summary: This paper introduces a novel approach to contextual optimization, integrating operations research and machine learning to address decision-making under uncertainty.<n>Our goal is to minimize the empirical risk, which is estimated from past data on uncertain parameters and contexts.
- Score: 1.4999444543328293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to contextual stochastic optimization, integrating operations research and machine learning to address decision-making under uncertainty. Traditional methods often fail to leverage contextual information, which underscores the necessity for new algorithms. In this study, we utilize neural networks with combinatorial optimization layers to encode policies. Our goal is to minimize the empirical risk, which is estimated from past data on uncertain parameters and contexts. To that end, we present a surrogate learning problem and a generic primal-dual algorithm that is applicable to various combinatorial settings in stochastic optimization. Our approach extends classic Fenchel-Young loss results and introduces a new regularization method using sparse perturbations on the distribution simplex. This allows for tractable updates in the original space and can accommodate diverse objective functions. We demonstrate the linear convergence of our algorithm under certain conditions and provide a bound on the non-optimality of the resulting policy in terms of the empirical risk. Experiments on a contextual stochastic minimum weight spanning tree problem show that our algorithm is efficient and scalable, achieving performance comparable to imitation learning of solutions computed using an expensive Lagrangian-based heuristic.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - Self-Supervised Penalty-Based Learning for Robust Constrained Optimization [4.297070083645049]
We propose a new methodology for parameterized constrained robust optimization, based on learning with a self-supervised penalty-based loss function.<n>Our approach is able to effectively learn neural network approximations whose inference time is significantly smaller than the time of traditional solvers.
arXiv Detail & Related papers (2025-03-07T06:42:17Z) - Preference-Based Gradient Estimation for ML-Guided Approximate Combinatorial Optimization [15.102119312523696]
Combinatorial optimization (CO) problems arise across a broad spectrum of domains, including medicine, logistics, and manufacturing.<n>We propose a learning-based approach that enhances existing non-learned approximation algorithms for CO.<n>Our method is trained end-to-end in a self-supervised fashion, using a novel gradient estimation scheme that treats the approximation algorithm as a black box.
arXiv Detail & Related papers (2025-02-26T18:23:07Z) - Effectively Leveraging Momentum Terms in Stochastic Line Search Frameworks for Fast Optimization of Finite-Sum Problems [0.5156484100374059]
We explore the relationship between recent line search approaches for deep optimization in the overparametrized regime and momentum directions.
We introduce algorithmic that exploits a mix of data persistency, conjugateient type rules for the definition of the momentum parameter.
The resulting algorithm is empirically shown to outperform other popular methods.
arXiv Detail & Related papers (2024-11-11T16:26:33Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - From Inverse Optimization to Feasibility to ERM [11.731853838892487]
We study the contextual inverse setting that utilizes additional contextual information to better predict parameters.
We experimentally validate our approach on synthetic and real-world problems and demonstrate improved performance compared to existing methods.
arXiv Detail & Related papers (2024-02-27T21:06:42Z) - Adaptive pruning-based Newton's method for distributed learning [14.885388389215587]
This paper presents a novel and efficient algorithm named Distributed Adaptive Newton Learning (textttDANL)<n>textttDANL attains a linear convergence rate while efficiently adapting to available resources and keeping high efficiency.<n>Experiments demonstrate that textttDANL achieves linear convergence with efficient communication and strong performance across different datasets.
arXiv Detail & Related papers (2023-08-20T04:01:30Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
We introduce a novel Neural Improvement (NI) model capable of handling graph-based problems where information is encoded in the nodes, edges, or both.
The presented model serves as a fundamental component for hill-climbing-based algorithms that guide the selection of neighborhood operations for each.
arXiv Detail & Related papers (2022-06-01T10:35:29Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
Batch policy optimization considers leveraging existing data for policy construction before interacting with an environment.
We show that any confidence-adjusted index algorithm is minimax optimal, whether it be optimistic, pessimistic or neutral.
We introduce a new weighted-minimax criterion that considers the inherent difficulty of optimal value prediction.
arXiv Detail & Related papers (2021-04-06T05:23:20Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.