Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective
- URL: http://arxiv.org/abs/2505.04758v1
- Date: Wed, 07 May 2025 19:37:20 GMT
- Title: Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective
- Authors: Songsong Duan, Xi Yang, Nannan Wang, Xinbo Gao,
- Abstract summary: Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency.<n>We propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives.<n> Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps.<n>For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities.<n>For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework.
- Score: 54.91271106816616
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency. Meanwhile, several existing lightweight methods are difficult to achieve high-precision performance. To balance the efficiency and performance, we propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives: depth quality, modality fusion, and feature representation. Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps,which effectively alleviates the multi-modal gaps in the current datasets. For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities. Here, the multi-modal features are decoupled into dual-view feature vectors to project discriminable information of feature maps. For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework to enlarge the limited feature space generated by the lightweight backbones. DIRM models texture features and saliency features to enrich feature space, and employ two-way prediction heads to optimal its parameters through a bi-directional backpropagation. Finally, we design a Dual Feature Aggregation Module (DFAM) in the decoder to aggregate texture and saliency features. Extensive experiments on five public RGB-D SOD datasets indicate that the proposed SATNet excels state-of-the-art (SOTA) CNN-based heavyweight models and achieves a lightweight framework with 5.2 M parameters and 415 FPS.
Related papers
- Just Dance with $π$! A Poly-modal Inductor for Weakly-supervised Video Anomaly Detection [12.492419773705898]
"PI-VAD" is a novel approach that augments RGB representations by five additional modalities.<n>PI-VAD achieves state-of-the-art accuracy on three prominent VAD scenarios.
arXiv Detail & Related papers (2025-05-19T13:51:57Z) - Rethinking Lightweight Salient Object Detection via Network Depth-Width
Tradeoff [26.566339984225756]
Existing salient object detection methods often adopt deeper and wider networks for better performance.
We propose a novel trilateral decoder framework by decoupling the U-shape structure into three complementary branches.
We show that our method achieves better efficiency-accuracy balance across five benchmarks.
arXiv Detail & Related papers (2023-01-17T03:43:25Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
arXiv Detail & Related papers (2021-12-01T15:53:58Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Middle-level Fusion for Lightweight RGB-D Salient Object Detection [81.43951906434175]
A novel lightweight RGB-D SOD model is presented in this paper.
With IMFF and L modules incorporated in the middle-level fusion structure, our proposed model has only 3.9M parameters and runs at 33 FPS.
The experimental results on several benchmark datasets verify the effectiveness and superiority of the proposed method over some state-of-the-art methods.
arXiv Detail & Related papers (2021-04-23T11:37:15Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD)
The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complementary information from RGB image and its corresponding depth map, and 2) how to adaptively select more saliency-related features.
arXiv Detail & Related papers (2020-07-14T14:22:50Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.