Spontaneous Raman scattering out of a metastable atomic qubit
- URL: http://arxiv.org/abs/2505.04854v1
- Date: Wed, 07 May 2025 23:32:33 GMT
- Title: Spontaneous Raman scattering out of a metastable atomic qubit
- Authors: I. D. Moore, A. Quinn, J. O'Reilly, J. Metzner, S. Brudney, G. J. Gregory, D. J. Wineland, D. T. C. Allcock,
- Abstract summary: We measure spontaneous Raman scattering rates out of a metastable $D_5/2$ qubit manifold of a single trapped $40$Ca$+$ ion illuminated by 976 nm light.<n>This supports the calculation of error rates from both types of scattering during one- and two-qubit gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metastable qubits in atomic systems can enable large-scale quantum computing by simplifying hardware requirements and adding efficient erasure conversion to the pre-existing toolbox of high-fidelity laser-based control. For trapped atomic ions, the fundamental error floor of this control is given by spontaneous Raman and Rayleigh scattering from short-lived excited states. We measure spontaneous Raman scattering rates out of a metastable $D_{5/2}$ qubit manifold of a single trapped $^{40}$Ca$^+$ ion illuminated by 976 nm light that is -44 THz detuned from the dipole-allowed transition to the $P_{3/2}$ manifold. This supports the calculation of error rates from both types of scattering during one- and two-qubit gates on this platform, thus demonstrating that infidelities $<10^{-4}$ are possible.
Related papers
- Spontaneous Raman scattering from metastable states of Ba$^+$ [0.0]
Quantum logic gates performed via two-photon stimulated-Raman transitions in ions and atoms are fundamentally limited by spontaneous scattering errors.<n>Recent theoretical treatment of these scattering processes has predicted no lower bound on the error rate of such gates when implemented with far-detuned lasers.
arXiv Detail & Related papers (2025-05-28T15:19:21Z) - In-situ mid-circuit qubit measurement and reset in a single-species trapped-ion quantum computing system [34.82692226532414]
We implement in-situ mid-circuit measurement and reset (MCMR) operations on a trapped-ion quantum computing system.<n>We introduce and compare two methods for isolating data qubits from measured qubits.<n>We experimentally demonstrate both methods on a crystal of two $171textrmYb+$ ions.
arXiv Detail & Related papers (2025-04-17T00:10:35Z) - On-the-Spot Loading of Single-Atom Traps [0.0]
We show that increasing the depth of a static, optical dipole trap enables the transition from fast loading on a timescale of $2.1,$s to an extended trap lifetime of $7.9,$s.<n>This method demonstrates an achievable filling ratio of $(79pm2),%$ without the need of rearranging atoms to fill vacant traps.
arXiv Detail & Related papers (2025-01-10T18:38:59Z) - The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - A low-crosstalk double-side addressing system using acousto-optic
deflectors for atomic ion qubits [43.30164109590217]
We demonstrate a low-crosstalk double-side addressing system based on a pair of acousto-optic deflectors (AODs)
The AODs addressing method can flexibly and parallelly address arbitrary ions between which the distance is variable in a chain.
We employ two 0.4NA objective lenses in both arms of the Raman laser and obtain a beam waist of 0.95$mumathrmm$, resulting in a Rabi rate crosstalk as low as $6.32times10-4$ when the neighboring ion separation is about 5.5$mu
arXiv Detail & Related papers (2023-06-02T07:12:59Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Photon scattering errors during stimulated Raman transitions in
trapped-ion qubits [0.0]
We study photon scattering errors in stimulated Raman driven quantum logic gates.
Previous models significantly overestimate the gate error rate due to photon scattering.
gate errors below $10-4$ are achievable for all commonly-used trapped ions.
arXiv Detail & Related papers (2022-11-01T20:56:22Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Dispersive optical systems for scalable Raman driving of hyperfine
qubits [45.82374977939355]
We introduce a new method for generating amplitude modulation by phase modulating a laser.
This approach is passively stable, offers high efficiency, and is compatible with high-power laser sources.
We benchmark this new approach by globally driving an array of $sim 300$ neutral $87$Rb atomic qubits trapped in optical tweezers.
arXiv Detail & Related papers (2021-10-27T18:00:00Z) - Deterministic Single Ion Implantation with 99.87% Confidence for
Scalable Donor-Qubit Arrays in Silicon [44.62475518267084]
Group-V-donor spins are attractive qubits for large-scale quantum computer devices.
Group-V-donor spins implanted in an isotopically purified $28$Si crystal make them attractive qubits.
We demonstrate the implantation of single low-energy (14 keV) P$+$ ions with an unprecedented $99.87pm0.02$% confidence.
arXiv Detail & Related papers (2020-09-07T05:23:07Z) - Sub-ms, nondestructive, time-resolved quantum-state readout of a single,
trapped neutral atom [0.0]
We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $87$Rb atom.
The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population.
Our results are likely to find application in neutral-atom quantum computing and simulation.
arXiv Detail & Related papers (2020-07-18T13:02:49Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z) - Scalability and high-efficiency of an $(n+1)$-qubit Toffoli gate sphere
via blockaded Rydberg atoms [6.151090395769923]
Current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates.
We develop a new theoretical protocol to construct a universal $(n+1)$-qubit Toffoli gate sphere based on the Rydberg blockade mechanism.
We show that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state preparation.
arXiv Detail & Related papers (2020-01-14T03:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.