Sub-ms, nondestructive, time-resolved quantum-state readout of a single,
trapped neutral atom
- URL: http://arxiv.org/abs/2007.09422v2
- Date: Sun, 11 Oct 2020 20:55:10 GMT
- Title: Sub-ms, nondestructive, time-resolved quantum-state readout of a single,
trapped neutral atom
- Authors: Margaret E. Shea, Paul M. Baker, James A. Joseph, Jungsang Kim, Daniel
J. Gauthier
- Abstract summary: We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $87$Rb atom.
The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population.
Our results are likely to find application in neutral-atom quantum computing and simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We achieve fast, nondestructive quantum-state readout via fluorescence
detection of a single $^{87}$Rb atom in the 5$S_{1/2}$ ($F=2$) ground state
held in an optical dipole trap. The atom is driven by linearly-polarized
readout laser beams, making the scheme insensitive to the distribution of
atomic population in the magnetic sub-levels. We demonstrate a readout fidelity
of $97.6\pm0.2\%$ in a readout time of $160\pm20$ $\mu$s with the atom retained
in $>97\%$ of the trials, representing an advancement over other
magnetic-state-insensitive techniques. We demonstrate that the $F=2$ state is
partially protected from optical pumping by the distribution of the dipole
matrix elements for the various transitions and the AC-Stark shifts from the
optical trap. Our results are likely to find application in neutral-atom
quantum computing and simulation.
Related papers
- Coherence Preserving Leakage Detection and Cooling in Alkaline Earth Atoms [0.0]
Quantum nondemolition (QND) processes are made possible by encoding quantum information in the nuclear spin of alkaline earth-like atoms.
These advances could significantly improve the prospect of neutral atoms for fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-10-30T20:17:19Z) - Repetitive readout and real-time control of nuclear spin qubits in
$^{171}$Yb atoms [0.0]
We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of atoms.
The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states.
These capabilities constitute an important step towards adaptive quantum circuits with atom arrays.
arXiv Detail & Related papers (2023-05-04T15:28:45Z) - State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based
Optical Dipole Trap [0.0]
We demonstrate a state-insensitive optical dipole trap for strontium-88, an alkaline-earth atom, using the evanescent fields of a nanotapered optical fiber.
This work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.
arXiv Detail & Related papers (2022-11-08T04:54:50Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Quantum Non-Demolition Measurement on the Spin Precession of
Laser-Trapped $^{171}$Yb Atoms [0.0]
Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity.
We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms.
arXiv Detail & Related papers (2022-09-17T02:19:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Detecting a single atom in a cavity using the $\chi^{(2)}$ nonlinear
medium [13.768073095397243]
We propose a protocol for detecting a single atom in a cavity with the help of the $chi(2)$ nonlinear medium.
The proposed protocol exhibits some advantages, such as controllable squeezing strength and exponential increase of atom-cavity coupling strength.
arXiv Detail & Related papers (2022-02-22T07:40:00Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.