論文の概要: Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model
- arxiv url: http://arxiv.org/abs/2505.04861v1
- Date: Thu, 08 May 2025 00:08:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.706047
- Title: Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model
- Title(参考訳): Mix-QSAM:Segment Anything Modelの混合精度量子化
- Authors: Navin Ranjan, Andreas Savakis,
- Abstract要約: Mix-QSAMはSegment Anything Model(SAM)のためのPTQフレームワークである。
モデル出力に対する各レイヤの寄与を定量化するために,Kulback-Leibler (KL) 偏差を用いて導出したレイヤ単位の重要度スコアを導入する。
また、隣接層間の依存関係を捉えるために、因果的相互情報に基づく新しい計量である層間相乗法を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Segment Anything Model (SAM) is a popular vision foundation model; however, its high computational and memory demands make deployment on resource-constrained devices challenging. While Post-Training Quantization (PTQ) is a practical approach for reducing computational overhead, existing PTQ methods rely on fixed bit-width quantization, leading to suboptimal accuracy and efficiency. To address this limitation, we propose Mix-QSAM, a mixed-precision PTQ framework for SAM. First, we introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output. Second, we introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers. This ensures that highly interdependent layers maintain similar bit-widths, preventing abrupt precision mismatches that degrade feature propagation and numerical stability. Using these metrics, we formulate an Integer Quadratic Programming (IQP) problem to determine optimal bit-width allocation under model size and bit-operation constraints, assigning higher precision to critical layers while minimizing bit-width in less influential layers. Experimental results demonstrate that Mix-QSAM consistently outperforms existing PTQ methods on instance segmentation and object detection tasks, achieving up to 20% higher average precision under 6-bit and 4-bit mixed-precision settings, while maintaining computational efficiency.
- Abstract(参考訳): Segment Anything Model (SAM)は一般的なビジョン基盤モデルであるが、その高い計算量とメモリ要求により、リソースに制約のあるデバイスへのデプロイは困難である。
PTQ(Post-Training Quantization)は計算オーバーヘッドを削減するための実用的な手法であるが、既存のPTQ法は固定ビット幅量子化に依存しており、最適以下の精度と効率をもたらす。
この制限に対処するため、SAM用の混合精度PTQフレームワークであるMix-QSAMを提案する。
まず,Kullback-Leibler (KL) の発散から導出したレイヤ単位の重要度スコアを導入し,モデルの出力に対する各レイヤの貢献度を定量化する。
第2に、隣り合う層間の依存関係を捉えるために、因果的相互情報に基づく新しい計量である層間相乗法を導入する。
これにより、高い相互依存層が同様のビット幅を維持し、特徴伝播と数値安定性を低下させる急激な精度のミスマッチを防止できる。
これらの指標を用いて、モデルサイズとビット演算制約下での最適ビット幅割り当てを決定するために、Integer Quadratic Programming (IQP) 問題を定式化し、重要層に高い精度を割り当てると同時に、影響の少ない層でビット幅を最小化する。
実験結果から,Mix-QSAMは既存のPTQ手法よりも高い性能を示し,最大で6ビットおよび4ビットの混合精度で平均精度を最大20%向上し,計算効率を維持した。
関連論文リスト
- FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQは、ソフトウェアとハードウェアの共同設計であり、大規模言語モデルの低ビット細粒度混合精度量子化のための設計である。
重みをよりきめ細かいクラスタに分割し、これらのクラスタ内の外れ値の分布を考慮する。
近似平均ビット幅でのSOTA混合精度量子化アルゴリズムと比較してモデル精度が向上する。
論文 参考訳(メタデータ) (2025-04-28T12:47:23Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Towards Accurate Post-training Quantization for Reparameterized Models [6.158896686945439]
現在のポストトレーニング量子化法(PTQ)は、しばしばかなりの精度の劣化を引き起こす。
これは主にチャネル特異的およびサンプル特異的な外れ値によって引き起こされる。
本稿では、量子化された再パラメータ化モデルの精度を維持する新しいフレームワークであるRepAPQを提案する。
論文 参考訳(メタデータ) (2024-02-25T15:42:12Z) - CBQ: Cross-Block Quantization for Large Language Models [66.82132832702895]
ポストトレーニング量子化(PTQ)は、超低コストで大規模言語モデル(LLM)を圧縮する上で重要な役割を果たしている。
LLMのためのクロスブロック再構成に基づくPTQ手法CBQを提案する。
CBQはリコンストラクションスキームを使用してクロスブロック依存関係を採用し、エラーの蓄積を最小限に抑えるために複数のブロックにまたがる長距離依存関係を確立する。
論文 参考訳(メタデータ) (2023-12-13T07:56:27Z) - Mixed-Precision Quantization for Deep Vision Models with Integer Quadratic Programming [7.0146264551420066]
量子化はニューラルネットワークを圧縮する技術として広く使われている。
MPQは、様々なビット幅をレイヤに割り当て、精度と効率のトレードオフを最適化することで、この問題に対処する。
我々は、量子化誤差の層間依存性をキャプチャする実用的な感度に基づくMPQアルゴリズムであるCLADOを紹介する。
論文 参考訳(メタデータ) (2023-07-11T15:56:00Z) - Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization [7.392278887917975]
本稿では,ネットワーク上のテンソルに異なる数値精度を割り当てる混合精度ポストトレーニング量子化手法を提案する。
実験では,16ビットベースラインの25.48%$,21.69%$,33.28%$に対して,レイテンシの低減を実証した。
論文 参考訳(メタデータ) (2023-06-08T02:18:58Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Sharpness-aware Quantization for Deep Neural Networks [45.150346855368]
シャープネス・アウェア量子化(SAQ)は,シャープネス・アウェア最小化(SAM)がモデル圧縮に与える影響を探索する新しい手法である。
本研究では,SAQにより量子化モデルの一般化性能が向上し,SOTAの結果が均一に量子化されることを示す。
論文 参考訳(メタデータ) (2021-11-24T05:16:41Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。