Federated Learning for Cyber Physical Systems: A Comprehensive Survey
- URL: http://arxiv.org/abs/2505.04873v1
- Date: Thu, 08 May 2025 01:17:15 GMT
- Title: Federated Learning for Cyber Physical Systems: A Comprehensive Survey
- Authors: Minh K. Quan, Pubudu N. Pathirana, Mayuri Wijayasundara, Sujeeva Setunge, Dinh C. Nguyen, Christopher G. Brinton, David J. Love, H. Vincent Poor,
- Abstract summary: Federated learning (FL) has become increasingly popular in recent years.<n>The article scrutinizes how FL is utilized in critical CPS applications, e.g., intelligent transportation systems, cybersecurity services, smart cities, and smart healthcare solutions.
- Score: 49.54239703000928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of machine learning (ML) in cyber physical systems (CPS) is a complex task due to the challenges that arise in terms of real-time decision making, safety, reliability, device heterogeneity, and data privacy. There are also open research questions that must be addressed in order to fully realize the potential of ML in CPS. Federated learning (FL), a distributed approach to ML, has become increasingly popular in recent years. It allows models to be trained using data from decentralized sources. This approach has been gaining popularity in the CPS field, as it integrates computer, communication, and physical processes. Therefore, the purpose of this work is to provide a comprehensive analysis of the most recent developments of FL-CPS, including the numerous application areas, system topologies, and algorithms developed in recent years. The paper starts by discussing recent advances in both FL and CPS, followed by their integration. Then, the paper compares the application of FL in CPS with its applications in the internet of things (IoT) in further depth to show their connections and distinctions. Furthermore, the article scrutinizes how FL is utilized in critical CPS applications, e.g., intelligent transportation systems, cybersecurity services, smart cities, and smart healthcare solutions. The study also includes critical insights and lessons learned from various FL-CPS implementations. The paper's concluding section delves into significant concerns and suggests avenues for further research in this fast-paced and dynamic era.
Related papers
- An Evaluation of Requirements Modeling for Cyber-Physical Systems via LLMs [18.657412233247328]
Problem frame approach aims to shape real-world problems by capturing the characteristics and interconnections of components.
Large language models (LLMs) have shown excellent performance in natural language understanding.
arXiv Detail & Related papers (2024-08-05T13:20:14Z) - A Scalable Clustered Architecture for Cyber-Physical Systems [0.0]
Cyber-Physical Systems (CPS) play a vital role in the operation of interconnected systems.
CPS integrates physical and software components capable of sensing, monitoring, and controlling physical assets and processes.
The development of this project aims to contribute to the design and implementation of a solution to the CPS challenges.
arXiv Detail & Related papers (2024-07-08T13:37:00Z) - Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers.<n>Federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework.<n>Swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE)<n>SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management.
arXiv Detail & Related papers (2024-05-01T14:59:24Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications [6.042202852003457]
Federated learning (FL) is a technique for developing robust machine learning (ML) models.
To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data.
This survey provides a comprehensive analysis and comparison of the most recent FL algorithms.
arXiv Detail & Related papers (2023-10-08T19:54:26Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
Federated Learning (FL) has become a viable technique for realizing privacy-enhancing distributed deep learning on the network edge.
In this paper, we propose FLEdge, which complements existing FL benchmarks by enabling a systematic evaluation of client capabilities.
arXiv Detail & Related papers (2023-06-08T13:11:20Z) - Federated Learning: Applications, Challenges and Future Scopes [1.3190581566723918]
Federated learning (FL) is a system in which a central aggregator coordinates the efforts of multiple clients to solve machine learning problems.
FL has applications in wireless communication, service recommendation, intelligent medical diagnosis systems, and healthcare.
arXiv Detail & Related papers (2022-05-18T10:47:09Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
We provide an overview of the current state of research regarding methods for learning physical concepts in time series data.
We also analyze the most important methods from the current state of the art using the example of a three-tank system.
arXiv Detail & Related papers (2021-11-28T14:24:52Z) - Resilient Machine Learning for Networked Cyber Physical Systems: A
Survey for Machine Learning Security to Securing Machine Learning for CPS [3.5643245407473545]
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information worlds.
An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium.
In a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks.
Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries.
arXiv Detail & Related papers (2021-02-14T20:50:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.