Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications
- URL: http://arxiv.org/abs/2310.05269v3
- Date: Sun, 26 May 2024 02:37:36 GMT
- Title: Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications
- Authors: Azim Akhtarshenas, Mohammad Ali Vahedifar, Navid Ayoobi, Behrouz Maham, Tohid Alizadeh, Sina Ebrahimi, David López-Pérez,
- Abstract summary: Federated learning (FL) is a technique for developing robust machine learning (ML) models.
To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data.
This survey provides a comprehensive analysis and comparison of the most recent FL algorithms.
- Score: 6.042202852003457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust machine learning (ML) models can be developed by leveraging large volumes of data and distributing the computational tasks across numerous devices or servers. Federated learning (FL) is a technique in the realm of ML that facilitates this goal by utilizing cloud infrastructure to enable collaborative model training among a network of decentralized devices. Beyond distributing the computational load, FL targets the resolution of privacy issues and the reduction of communication costs simultaneously. To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data. Specifically, individuals train ML models locally using their own data and then upload the results in the form of weights and gradients to the cloud for aggregation into the global model. This strategy is also advantageous in environments with limited bandwidth or high communication costs, as it prevents the transmission of large data volumes. With the increasing volume of data and rising privacy concerns, alongside the emergence of large-scale ML models like Large Language Models (LLMs), FL presents itself as a timely and relevant solution. It is therefore essential to review current FL algorithms to guide future research that meets the rapidly evolving ML demands. This survey provides a comprehensive analysis and comparison of the most recent FL algorithms, evaluating them on various fronts including mathematical frameworks, privacy protection, resource allocation, and applications. Beyond summarizing existing FL methods, this survey identifies potential gaps, open areas, and future challenges based on the performance reports and algorithms used in recent studies. This survey enables researchers to readily identify existing limitations in the FL field for further exploration.
Related papers
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Edge-Native Intelligence for 6G Communications Driven by Federated
Learning: A Survey of Trends and Challenges [14.008159759350264]
A new technique, coined as federated learning (FL), arose to bring machine learning to the edge of wireless networks.
FL exploits both decentralised datasets and computing resources of participating clients to develop a generalised ML model without compromising data privacy.
The purpose of this survey is to provide an overview of the state-of-the-art of FL applications in key wireless technologies.
arXiv Detail & Related papers (2021-11-14T17:13:34Z) - Federated Learning for Physical Layer Design [38.46522285374866]
Federated learning (FL) has been proposed recently as a distributed learning scheme.
FL is more communication-efficient and privacy-preserving than centralized learning (CL)
This article discusses the recent advances in FL-based training for physical layer design problems.
arXiv Detail & Related papers (2021-02-23T16:22:53Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.