Cross-Branch Orthogonality for Improved Generalization in Face Deepfake Detection
- URL: http://arxiv.org/abs/2505.04888v1
- Date: Thu, 08 May 2025 01:49:53 GMT
- Title: Cross-Branch Orthogonality for Improved Generalization in Face Deepfake Detection
- Authors: Tharindu Fernando, Clinton Fookes, Sridha Sridharan, Simon Denman,
- Abstract summary: Deepfakes are becoming a nuisance to law enforcement authorities and the general public.<n>Existing deepfake detectors are struggling to keep up with the pace of improvements in deepfake generation.<n>This paper proposes a new strategy that leverages coarse-to-fine spatial information, semantic information, and their interactions.
- Score: 43.2796409299818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remarkable advancements in generative AI technology have given rise to a spectrum of novel deepfake categories with unprecedented leaps in their realism, and deepfakes are increasingly becoming a nuisance to law enforcement authorities and the general public. In particular, we observe alarming levels of confusion, deception, and loss of faith regarding multimedia content within society caused by face deepfakes, and existing deepfake detectors are struggling to keep up with the pace of improvements in deepfake generation. This is primarily due to their reliance on specific forgery artifacts, which limits their ability to generalise and detect novel deepfake types. To combat the spread of malicious face deepfakes, this paper proposes a new strategy that leverages coarse-to-fine spatial information, semantic information, and their interactions while ensuring feature distinctiveness and reducing the redundancy of the modelled features. A novel feature orthogonality-based disentanglement strategy is introduced to ensure branch-level and cross-branch feature disentanglement, which allows us to integrate multiple feature vectors without adding complexity to the feature space or compromising generalisation. Comprehensive experiments on three public benchmarks: FaceForensics++, Celeb-DF, and the Deepfake Detection Challenge (DFDC) show that these design choices enable the proposed approach to outperform current state-of-the-art methods by 5% on the Celeb-DF dataset and 7% on the DFDC dataset in a cross-dataset evaluation setting.
Related papers
- FAME: A Lightweight Spatio-Temporal Network for Model Attribution of Face-Swap Deepfakes [9.462613446025001]
Face-fake Deepfake videos pose growing risks to digital security, privacy, and media integrity.<n>FAME is a framework designed to capture subtle artifacts specific to different face-generative models.<n>Results show that FAME consistently outperforms existing methods in both accuracy and runtime.
arXiv Detail & Related papers (2025-06-13T05:47:09Z) - Towards Open-world Generalized Deepfake Detection: General Feature Extraction via Unsupervised Domain Adaptation [15.737902253508235]
Social platforms are flooded with vast amounts of unlabeled synthetic data and authentic data.<n>In open world scenarios, the amount of unlabeled data greatly exceeds that of labeled data.<n>We propose a novel Open-World Deepfake Detection Generalization Enhancement Training Strategy (OWG-DS) to improve the generalization ability of existing methods.
arXiv Detail & Related papers (2025-05-18T10:12:12Z) - Robust AI-Generated Face Detection with Imbalanced Data [10.360215701635674]
Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP.<n>Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models.<n>We propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions.
arXiv Detail & Related papers (2025-05-04T17:02:10Z) - Securing Social Media Against Deepfakes using Identity, Behavioral, and Geometric Signatures [6.3947036687002985]
Trust in social media is a growing concern due to its ability to influence significant societal changes.<n>Deepfake multimedia undermine the authenticity of shared content.<n>Existing detection techniques tend to perform well only on specific types of deepfakes they were trained on.
arXiv Detail & Related papers (2024-12-07T01:17:21Z) - DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion [94.46904504076124]
Deepfake technology has made face swapping highly realistic, raising concerns about the malicious use of fabricated facial content.
Existing methods often struggle to generalize to unseen domains due to the diverse nature of facial manipulations.
We introduce DiffusionFake, a novel framework that reverses the generative process of face forgeries to enhance the generalization of detection models.
arXiv Detail & Related papers (2024-10-06T06:22:43Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain.
We propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF)
Experiment results on several public face forgery datasets demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T08:58:49Z) - FedForgery: Generalized Face Forgery Detection with Residual Federated
Learning [87.746829550726]
Existing face forgery detection methods directly utilize the obtained public shared or centralized data for training.
The paper proposes a novel generalized residual Federated learning for face Forgery detection (FedForgery)
Experiments conducted on publicly available face forgery detection datasets prove the superior performance of the proposed FedForgery.
arXiv Detail & Related papers (2022-10-18T03:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.