An Efficient Method for Accurate Pose Estimation and Error Correction of Cuboidal Objects
- URL: http://arxiv.org/abs/2505.04962v1
- Date: Thu, 08 May 2025 05:43:31 GMT
- Title: An Efficient Method for Accurate Pose Estimation and Error Correction of Cuboidal Objects
- Authors: Utsav Rai, Hardik Mehta, Vismay Vakharia, Aditya Choudhary, Amit Parmar, Rolif Lima, Kaushik Das,
- Abstract summary: This paper presents an efficient method for precise pose estimation of cuboid-shaped objects.<n>It aims to reduce errors in target pose in a time-efficient manner.
- Score: 0.2826977330147589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proposed system outlined in this paper is a solution to a use case that requires the autonomous picking of cuboidal objects from an organized or unorganized pile with high precision. This paper presents an efficient method for precise pose estimation of cuboid-shaped objects, which aims to reduce errors in target pose in a time-efficient manner. Typical pose estimation methods like global point cloud registrations are prone to minor pose errors for which local registration algorithms are generally used to improve pose accuracy. However, due to the execution time overhead and uncertainty in the error of the final achieved pose, an alternate, linear time approach is proposed for pose error estimation and correction. This paper presents an overview of the solution followed by a detailed description of individual modules of the proposed algorithm.
Related papers
- Improving Predictor Reliability with Selective Recalibration [15.319277333431318]
Recalibration is one of the most effective ways to produce reliable confidence estimates with a pre-trained model.
We propose textitselective recalibration, where a selection model learns to reject some user-chosen proportion of the data.
Our results show that selective recalibration consistently leads to significantly lower calibration error than a wide range of selection and recalibration baselines.
arXiv Detail & Related papers (2024-10-07T18:17:31Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - Assembly Planning from Observations under Physical Constraints [65.83676649042623]
The proposed algorithm uses a simple combination of physical stability constraints, convex optimization and Monte Carlo tree search to plan assemblies.
It is efficient and, most importantly, robust to the errors in object detection and pose estimation unavoidable in any real robotic system.
arXiv Detail & Related papers (2022-04-20T16:51:07Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Single upper limb pose estimation method based on improved stacked
hourglass network [5.342260499725028]
It is difficult to achieve both high accuracy and real-time performance in single-person pose estimation.
This paper proposes a single-person upper limb pose estimation method based on an end-to-end approach.
arXiv Detail & Related papers (2020-04-16T04:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.