DenseGrounding: Improving Dense Language-Vision Semantics for Ego-Centric 3D Visual Grounding
- URL: http://arxiv.org/abs/2505.04965v1
- Date: Thu, 08 May 2025 05:49:06 GMT
- Title: DenseGrounding: Improving Dense Language-Vision Semantics for Ego-Centric 3D Visual Grounding
- Authors: Henry Zheng, Hao Shi, Qihang Peng, Yong Xien Chng, Rui Huang, Yepeng Weng, Zhongchao Shi, Gao Huang,
- Abstract summary: A fundamental task in this field is ego-centric 3D visual grounding, where agents locate target objects in real-world 3D spaces based on verbal descriptions.<n>We propose DenseGrounding, a novel approach designed to enhance both visual and textual semantics.<n>For visual features, we introduce the Hierarchical Scene Semantic Enhancer, which retains dense semantics by capturing fine-grained global scene features.<n>For text descriptions, we propose a Language Semantic Enhancer that leverages large language models to provide rich context and diverse language descriptions.
- Score: 44.81427860963744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling intelligent agents to comprehend and interact with 3D environments through natural language is crucial for advancing robotics and human-computer interaction. A fundamental task in this field is ego-centric 3D visual grounding, where agents locate target objects in real-world 3D spaces based on verbal descriptions. However, this task faces two significant challenges: (1) loss of fine-grained visual semantics due to sparse fusion of point clouds with ego-centric multi-view images, (2) limited textual semantic context due to arbitrary language descriptions. We propose DenseGrounding, a novel approach designed to address these issues by enhancing both visual and textual semantics. For visual features, we introduce the Hierarchical Scene Semantic Enhancer, which retains dense semantics by capturing fine-grained global scene features and facilitating cross-modal alignment. For text descriptions, we propose a Language Semantic Enhancer that leverages large language models to provide rich context and diverse language descriptions with additional context during model training. Extensive experiments show that DenseGrounding significantly outperforms existing methods in overall accuracy, with improvements of 5.81% and 7.56% when trained on the comprehensive full dataset and smaller mini subset, respectively, further advancing the SOTA in egocentric 3D visual grounding. Our method also achieves 1st place and receives the Innovation Award in the CVPR 2024 Autonomous Grand Challenge Multi-view 3D Visual Grounding Track, validating its effectiveness and robustness.
Related papers
- Masked Point-Entity Contrast for Open-Vocabulary 3D Scene Understanding [31.40722103849691]
MPEC is a novel learning method for open-vocabulary 3D semantic segmentation.<n>It uses both 3D entity-language alignment and point-entity consistency across different point cloud views.<n>Our method achieves state-of-the-art results on ScanNet for open-vocabulary 3D semantic segmentation.
arXiv Detail & Related papers (2025-04-28T05:43:14Z) - Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image [70.02187124865627]
Open-vocabulary 3D object detection (OV-3DDet) aims to localize and recognize both seen and previously unseen object categories within any new 3D scene.
We leverage a vision foundation model to provide image-wise guidance for discovering novel classes in 3D scenes.
We demonstrate significant improvements in accuracy and generalization, highlighting the potential of foundation models in advancing open-vocabulary 3D object detection.
arXiv Detail & Related papers (2024-07-07T04:50:04Z) - Naturally Supervised 3D Visual Grounding with Language-Regularized Concept Learners [15.178598145436142]
We propose the Language-Regularized Concept Learner (LARC)
LARC uses constraints from language as regularization to significantly improve the accuracy of neuro-symbolic concept learners.
We show that LARC improves performance of prior works in naturally supervised 3D visual grounding.
arXiv Detail & Related papers (2024-04-30T16:44:18Z) - SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding [37.47195477043883]
3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents.
We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes.
We demonstrate this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS) for 3D vision-language learning.
arXiv Detail & Related papers (2024-01-17T17:04:35Z) - Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding [56.00186960144545]
3D visual grounding is the task of localizing the object in a 3D scene which is referred by a description in natural language.
We propose a dense 3D grounding network, featuring four novel stand-alone modules that aim to improve grounding performance.
arXiv Detail & Related papers (2023-09-08T19:27:01Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data.
We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud.
Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots.
arXiv Detail & Related papers (2023-04-12T06:48:26Z) - ScanERU: Interactive 3D Visual Grounding based on Embodied Reference
Understanding [67.21613160846299]
Embodied Reference Understanding (ERU) is first designed for this concern.
New dataset called ScanERU is constructed to evaluate the effectiveness of this idea.
arXiv Detail & Related papers (2023-03-23T11:36:14Z) - Self-supervised 3D Semantic Representation Learning for
Vision-and-Language Navigation [30.429893959096752]
We develop a novel training framework to encode the voxel-level 3D semantic reconstruction into a 3D semantic representation.
We construct an LSTM-based navigation model and train it with the proposed 3D semantic representations and BERT language features on vision-language pairs.
Experiments show that the proposed approach achieves success rates of 68% and 66% on the validation unseen and test unseen splits of the R2R dataset.
arXiv Detail & Related papers (2022-01-26T07:43:47Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.